Integration with Infinity (#2894)

### What problem does this PR solve?

Integration with Infinity

- Replaced ELASTICSEARCH with dataStoreConn
- Renamed deleteByQuery with delete
- Renamed bulk to upsertBulk
- getHighlight, getAggregation
- Fix KGSearch.search
- Moved Dealer.sql_retrieval to es_conn.py


### Type of change

- [x] Refactoring
This commit is contained in:
Zhichang Yu
2024-11-12 14:59:41 +08:00
committed by GitHub
parent 00b6000b76
commit f4c52371ab
42 changed files with 2647 additions and 1878 deletions

View File

@ -14,34 +14,25 @@
# limitations under the License.
#
import json
import re
from copy import deepcopy
from elasticsearch_dsl import Q, Search
import json
from typing import List, Optional, Dict, Union
from dataclasses import dataclass
from rag.settings import es_logger
from rag.settings import doc_store_logger
from rag.utils import rmSpace
from rag.nlp import rag_tokenizer, query, is_english
from rag.nlp import rag_tokenizer, query
import numpy as np
from rag.utils.doc_store_conn import DocStoreConnection, MatchDenseExpr, FusionExpr, OrderByExpr
def index_name(uid): return f"ragflow_{uid}"
class Dealer:
def __init__(self, es):
self.qryr = query.EsQueryer(es)
self.qryr.flds = [
"title_tks^10",
"title_sm_tks^5",
"important_kwd^30",
"important_tks^20",
"content_ltks^2",
"content_sm_ltks"]
self.es = es
def __init__(self, dataStore: DocStoreConnection):
self.qryr = query.FulltextQueryer()
self.dataStore = dataStore
@dataclass
class SearchResult:
@ -54,170 +45,99 @@ class Dealer:
keywords: Optional[List[str]] = None
group_docs: List[List] = None
def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
qv, c = emb_mdl.encode_queries(txt)
return {
"field": "q_%d_vec" % len(qv),
"k": topk,
"similarity": sim,
"num_candidates": topk * 2,
"query_vector": [float(v) for v in qv]
}
def get_vector(self, txt, emb_mdl, topk=10, similarity=0.1):
qv, _ = emb_mdl.encode_queries(txt)
embedding_data = [float(v) for v in qv]
vector_column_name = f"q_{len(embedding_data)}_vec"
return MatchDenseExpr(vector_column_name, embedding_data, 'float', 'cosine', topk, {"similarity": similarity})
def _add_filters(self, bqry, req):
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
if req.get("doc_ids"):
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
if req.get("knowledge_graph_kwd"):
bqry.filter.append(Q("terms", knowledge_graph_kwd=req["knowledge_graph_kwd"]))
if "available_int" in req:
if req["available_int"] == 0:
bqry.filter.append(Q("range", available_int={"lt": 1}))
else:
bqry.filter.append(
Q("bool", must_not=Q("range", available_int={"lt": 1})))
return bqry
def get_filters(self, req):
condition = dict()
for key, field in {"kb_ids": "kb_id", "doc_ids": "doc_id"}.items():
if key in req and req[key] is not None:
condition[field] = req[key]
# TODO(yzc): `available_int` is nullable however infinity doesn't support nullable columns.
for key in ["knowledge_graph_kwd"]:
if key in req and req[key] is not None:
condition[key] = req[key]
return condition
def search(self, req, idxnms, emb_mdl=None, highlight=False):
qst = req.get("question", "")
bqry, keywords = self.qryr.question(qst, min_match="30%")
bqry = self._add_filters(bqry, req)
bqry.boost = 0.05
def search(self, req, idx_names: list[str], kb_ids: list[str], emb_mdl=None, highlight = False):
filters = self.get_filters(req)
orderBy = OrderByExpr()
s = Search()
pg = int(req.get("page", 1)) - 1
topk = int(req.get("topk", 1024))
ps = int(req.get("size", topk))
offset, limit = pg * ps, (pg + 1) * ps
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd",
"image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int", "knowledge_graph_kwd",
"q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
s = s.highlight("content_ltks")
s = s.highlight("title_ltks")
if not qst:
if not req.get("sort"):
s = s.sort(
#{"create_time": {"order": "desc", "unmapped_type": "date"}},
{"create_timestamp_flt": {
"order": "desc", "unmapped_type": "float"}}
)
else:
s = s.sort(
{"page_num_int": {"order": "asc", "unmapped_type": "float",
"mode": "avg", "numeric_type": "double"}},
{"top_int": {"order": "asc", "unmapped_type": "float",
"mode": "avg", "numeric_type": "double"}},
#{"create_time": {"order": "desc", "unmapped_type": "date"}},
{"create_timestamp_flt": {
"order": "desc", "unmapped_type": "float"}}
)
if qst:
s = s.highlight_options(
fragment_size=120,
number_of_fragments=5,
boundary_scanner_locale="zh-CN",
boundary_scanner="SENTENCE",
boundary_chars=",./;:\\!(),。?:!……()——、"
)
s = s.to_dict()
q_vec = []
if req.get("vector"):
assert emb_mdl, "No embedding model selected"
s["knn"] = self._vector(
qst, emb_mdl, req.get(
"similarity", 0.1), topk)
s["knn"]["filter"] = bqry.to_dict()
if not highlight and "highlight" in s:
del s["highlight"]
q_vec = s["knn"]["query_vector"]
es_logger.info("【Q】: {}".format(json.dumps(s)))
res = self.es.search(deepcopy(s), idxnms=idxnms, timeout="600s", src=src)
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
if self.es.getTotal(res) == 0 and "knn" in s:
bqry, _ = self.qryr.question(qst, min_match="10%")
if req.get("doc_ids"):
bqry = Q("bool", must=[])
bqry = self._add_filters(bqry, req)
s["query"] = bqry.to_dict()
s["knn"]["filter"] = bqry.to_dict()
s["knn"]["similarity"] = 0.17
res = self.es.search(s, idxnms=idxnms, timeout="600s", src=src)
es_logger.info("【Q】: {}".format(json.dumps(s)))
"doc_id", "position_list", "knowledge_graph_kwd",
"available_int", "content_with_weight"])
kwds = set([])
for k in keywords:
kwds.add(k)
for kk in rag_tokenizer.fine_grained_tokenize(k).split(" "):
if len(kk) < 2:
continue
if kk in kwds:
continue
kwds.add(kk)
aggs = self.getAggregation(res, "docnm_kwd")
qst = req.get("question", "")
q_vec = []
if not qst:
if req.get("sort"):
orderBy.desc("create_timestamp_flt")
res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
doc_store_logger.info("Dealer.search TOTAL: {}".format(total))
else:
highlightFields = ["content_ltks", "title_tks"] if highlight else []
matchText, keywords = self.qryr.question(qst, min_match=0.3)
if emb_mdl is None:
matchExprs = [matchText]
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
doc_store_logger.info("Dealer.search TOTAL: {}".format(total))
else:
matchDense = self.get_vector(qst, emb_mdl, topk, req.get("similarity", 0.1))
q_vec = matchDense.embedding_data
src.append(f"q_{len(q_vec)}_vec")
fusionExpr = FusionExpr("weighted_sum", topk, {"weights": "0.05, 0.95"})
matchExprs = [matchText, matchDense, fusionExpr]
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
doc_store_logger.info("Dealer.search TOTAL: {}".format(total))
# If result is empty, try again with lower min_match
if total == 0:
matchText, _ = self.qryr.question(qst, min_match=0.1)
if "doc_ids" in filters:
del filters["doc_ids"]
matchDense.extra_options["similarity"] = 0.17
res = self.dataStore.search(src, highlightFields, filters, [matchText, matchDense, fusionExpr], orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
doc_store_logger.info("Dealer.search 2 TOTAL: {}".format(total))
for k in keywords:
kwds.add(k)
for kk in rag_tokenizer.fine_grained_tokenize(k).split(" "):
if len(kk) < 2:
continue
if kk in kwds:
continue
kwds.add(kk)
doc_store_logger.info(f"TOTAL: {total}")
ids=self.dataStore.getChunkIds(res)
keywords=list(kwds)
highlight = self.dataStore.getHighlight(res, keywords, "content_with_weight")
aggs = self.dataStore.getAggregation(res, "docnm_kwd")
return self.SearchResult(
total=self.es.getTotal(res),
ids=self.es.getDocIds(res),
total=total,
ids=ids,
query_vector=q_vec,
aggregation=aggs,
highlight=self.getHighlight(res, keywords, "content_with_weight"),
field=self.getFields(res, src),
keywords=list(kwds)
highlight=highlight,
field=self.dataStore.getFields(res, src),
keywords=keywords
)
def getAggregation(self, res, g):
if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
return
bkts = res["aggregations"]["aggs_" + g]["buckets"]
return [(b["key"], b["doc_count"]) for b in bkts]
def getHighlight(self, res, keywords, fieldnm):
ans = {}
for d in res["hits"]["hits"]:
hlts = d.get("highlight")
if not hlts:
continue
txt = "...".join([a for a in list(hlts.items())[0][1]])
if not is_english(txt.split(" ")):
ans[d["_id"]] = txt
continue
txt = d["_source"][fieldnm]
txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE|re.MULTILINE)
txts = []
for t in re.split(r"[.?!;\n]", txt):
for w in keywords:
t = re.sub(r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])"%re.escape(w), r"\1<em>\2</em>\3", t, flags=re.IGNORECASE|re.MULTILINE)
if not re.search(r"<em>[^<>]+</em>", t, flags=re.IGNORECASE|re.MULTILINE): continue
txts.append(t)
ans[d["_id"]] = "...".join(txts) if txts else "...".join([a for a in list(hlts.items())[0][1]])
return ans
def getFields(self, sres, flds):
res = {}
if not flds:
return {}
for d in self.es.getSource(sres):
m = {n: d.get(n) for n in flds if d.get(n) is not None}
for n, v in m.items():
if isinstance(v, type([])):
m[n] = "\t".join([str(vv) if not isinstance(
vv, list) else "\t".join([str(vvv) for vvv in vv]) for vv in v])
continue
if not isinstance(v, type("")):
m[n] = str(m[n])
#if n.find("tks") > 0:
# m[n] = rmSpace(m[n])
if m:
res[d["id"]] = m
return res
@staticmethod
def trans2floats(txt):
return [float(t) for t in txt.split("\t")]
@ -260,7 +180,7 @@ class Dealer:
continue
idx.append(i)
pieces_.append(t)
es_logger.info("{} => {}".format(answer, pieces_))
doc_store_logger.info("{} => {}".format(answer, pieces_))
if not pieces_:
return answer, set([])
@ -281,7 +201,7 @@ class Dealer:
chunks_tks,
tkweight, vtweight)
mx = np.max(sim) * 0.99
es_logger.info("{} SIM: {}".format(pieces_[i], mx))
doc_store_logger.info("{} SIM: {}".format(pieces_[i], mx))
if mx < thr:
continue
cites[idx[i]] = list(
@ -309,9 +229,15 @@ class Dealer:
def rerank(self, sres, query, tkweight=0.3,
vtweight=0.7, cfield="content_ltks"):
_, keywords = self.qryr.question(query)
ins_embd = [
Dealer.trans2floats(
sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
vector_size = len(sres.query_vector)
vector_column = f"q_{vector_size}_vec"
zero_vector = [0.0] * vector_size
ins_embd = []
for chunk_id in sres.ids:
vector = sres.field[chunk_id].get(vector_column, zero_vector)
if isinstance(vector, str):
vector = [float(v) for v in vector.split("\t")]
ins_embd.append(vector)
if not ins_embd:
return [], [], []
@ -377,7 +303,7 @@ class Dealer:
if isinstance(tenant_ids, str):
tenant_ids = tenant_ids.split(",")
sres = self.search(req, [index_name(tid) for tid in tenant_ids], embd_mdl, highlight)
sres = self.search(req, [index_name(tid) for tid in tenant_ids], kb_ids, embd_mdl, highlight)
ranks["total"] = sres.total
if page <= RERANK_PAGE_LIMIT:
@ -393,6 +319,8 @@ class Dealer:
idx = list(range(len(sres.ids)))
dim = len(sres.query_vector)
vector_column = f"q_{dim}_vec"
zero_vector = [0.0] * dim
for i in idx:
if sim[i] < similarity_threshold:
break
@ -401,34 +329,32 @@ class Dealer:
continue
break
id = sres.ids[i]
dnm = sres.field[id]["docnm_kwd"]
did = sres.field[id]["doc_id"]
chunk = sres.field[id]
dnm = chunk["docnm_kwd"]
did = chunk["doc_id"]
position_list = chunk.get("position_list", "[]")
if not position_list:
position_list = "[]"
d = {
"chunk_id": id,
"content_ltks": sres.field[id]["content_ltks"],
"content_with_weight": sres.field[id]["content_with_weight"],
"doc_id": sres.field[id]["doc_id"],
"content_ltks": chunk["content_ltks"],
"content_with_weight": chunk["content_with_weight"],
"doc_id": chunk["doc_id"],
"docnm_kwd": dnm,
"kb_id": sres.field[id]["kb_id"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"kb_id": chunk["kb_id"],
"important_kwd": chunk.get("important_kwd", []),
"image_id": chunk.get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i],
"vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim))),
"positions": sres.field[id].get("position_int", "").split("\t")
"vector": chunk.get(vector_column, zero_vector),
"positions": json.loads(position_list)
}
if highlight:
if id in sres.highlight:
d["highlight"] = rmSpace(sres.highlight[id])
else:
d["highlight"] = d["content_with_weight"]
if len(d["positions"]) % 5 == 0:
poss = []
for i in range(0, len(d["positions"]), 5):
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
d["positions"] = poss
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
@ -442,39 +368,11 @@ class Dealer:
return ranks
def sql_retrieval(self, sql, fetch_size=128, format="json"):
from api.settings import chat_logger
sql = re.sub(r"[ `]+", " ", sql)
sql = sql.replace("%", "")
es_logger.info(f"Get es sql: {sql}")
replaces = []
for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
fld, v = r.group(1), r.group(3)
match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(
fld, rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(v)))
replaces.append(
("{}{}'{}'".format(
r.group(1),
r.group(2),
r.group(3)),
match))
tbl = self.dataStore.sql(sql, fetch_size, format)
return tbl
for p, r in replaces:
sql = sql.replace(p, r, 1)
chat_logger.info(f"To es: {sql}")
try:
tbl = self.es.sql(sql, fetch_size, format)
return tbl
except Exception as e:
chat_logger.error(f"SQL failure: {sql} =>" + str(e))
return {"error": str(e)}
def chunk_list(self, doc_id, tenant_id, max_count=1024, fields=["docnm_kwd", "content_with_weight", "img_id"]):
s = Search()
s = s.query(Q("match", doc_id=doc_id))[0:max_count]
s = s.to_dict()
es_res = self.es.search(s, idxnms=index_name(tenant_id), timeout="600s", src=fields)
res = []
for index, chunk in enumerate(es_res['hits']['hits']):
res.append({fld: chunk['_source'].get(fld) for fld in fields})
return res
def chunk_list(self, doc_id: str, tenant_id: str, kb_ids: list[str], max_count=1024, fields=["docnm_kwd", "content_with_weight", "img_id"]):
condition = {"doc_id": doc_id}
res = self.dataStore.search(fields, [], condition, [], OrderByExpr(), 0, max_count, index_name(tenant_id), kb_ids)
dict_chunks = self.dataStore.getFields(res, fields)
return dict_chunks.values()