Integration with Infinity (#2894)

### What problem does this PR solve?

Integration with Infinity

- Replaced ELASTICSEARCH with dataStoreConn
- Renamed deleteByQuery with delete
- Renamed bulk to upsertBulk
- getHighlight, getAggregation
- Fix KGSearch.search
- Moved Dealer.sql_retrieval to es_conn.py


### Type of change

- [x] Refactoring
This commit is contained in:
Zhichang Yu
2024-11-12 14:59:41 +08:00
committed by GitHub
parent 00b6000b76
commit f4c52371ab
42 changed files with 2647 additions and 1878 deletions

View File

@ -25,6 +25,7 @@ import roman_numbers as r
from word2number import w2n
from cn2an import cn2an
from PIL import Image
import json
all_codecs = [
'utf-8', 'gb2312', 'gbk', 'utf_16', 'ascii', 'big5', 'big5hkscs',
@ -51,12 +52,12 @@ def find_codec(blob):
try:
blob[:1024].decode(c)
return c
except Exception as e:
except Exception:
pass
try:
blob.decode(c)
return c
except Exception as e:
except Exception:
pass
return "utf-8"
@ -241,7 +242,7 @@ def tokenize_chunks(chunks, doc, eng, pdf_parser=None):
d["image"], poss = pdf_parser.crop(ck, need_position=True)
add_positions(d, poss)
ck = pdf_parser.remove_tag(ck)
except NotImplementedError as e:
except NotImplementedError:
pass
tokenize(d, ck, eng)
res.append(d)
@ -289,13 +290,16 @@ def tokenize_table(tbls, doc, eng, batch_size=10):
def add_positions(d, poss):
if not poss:
return
d["page_num_int"] = []
d["position_int"] = []
d["top_int"] = []
page_num_list = []
position_list = []
top_list = []
for pn, left, right, top, bottom in poss:
d["page_num_int"].append(int(pn + 1))
d["top_int"].append(int(top))
d["position_int"].append((int(pn + 1), int(left), int(right), int(top), int(bottom)))
page_num_list.append(int(pn + 1))
top_list.append(int(top))
position_list.append((int(pn + 1), int(left), int(right), int(top), int(bottom)))
d["page_num_list"] = json.dumps(page_num_list)
d["position_list"] = json.dumps(position_list)
d["top_list"] = json.dumps(top_list)
def remove_contents_table(sections, eng=False):

View File

@ -15,20 +15,25 @@
#
import json
import math
import re
import logging
import copy
from elasticsearch_dsl import Q
from rag.utils.doc_store_conn import MatchTextExpr
from rag.nlp import rag_tokenizer, term_weight, synonym
class EsQueryer:
def __init__(self, es):
class FulltextQueryer:
def __init__(self):
self.tw = term_weight.Dealer()
self.es = es
self.syn = synonym.Dealer()
self.flds = ["ask_tks^10", "ask_small_tks"]
self.query_fields = [
"title_tks^10",
"title_sm_tks^5",
"important_kwd^30",
"important_tks^20",
"content_ltks^2",
"content_sm_ltks",
]
@staticmethod
def subSpecialChar(line):
@ -43,12 +48,15 @@ class EsQueryer:
for t in arr:
if not re.match(r"[a-zA-Z]+$", t):
e += 1
return e * 1. / len(arr) >= 0.7
return e * 1.0 / len(arr) >= 0.7
@staticmethod
def rmWWW(txt):
patts = [
(r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""),
(
r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*",
"",
),
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
(r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down|of) ", " ")
]
@ -56,16 +64,16 @@ class EsQueryer:
txt = re.sub(r, p, txt, flags=re.IGNORECASE)
return txt
def question(self, txt, tbl="qa", min_match="60%"):
def question(self, txt, tbl="qa", min_match:float=0.6):
txt = re.sub(
r"[ :\r\n\t,,。??/`!&\^%%]+",
" ",
rag_tokenizer.tradi2simp(
rag_tokenizer.strQ2B(
txt.lower()))).strip()
rag_tokenizer.tradi2simp(rag_tokenizer.strQ2B(txt.lower())),
).strip()
txt = FulltextQueryer.rmWWW(txt)
if not self.isChinese(txt):
txt = EsQueryer.rmWWW(txt)
txt = FulltextQueryer.rmWWW(txt)
tks = rag_tokenizer.tokenize(txt).split(" ")
tks_w = self.tw.weights(tks)
tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w]
@ -73,14 +81,20 @@ class EsQueryer:
tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk]
q = ["{}^{:.4f}".format(tk, w) for tk, w in tks_w if tk]
for i in range(1, len(tks_w)):
q.append("\"%s %s\"^%.4f" % (tks_w[i - 1][0], tks_w[i][0], max(tks_w[i - 1][1], tks_w[i][1])*2))
q.append(
'"%s %s"^%.4f'
% (
tks_w[i - 1][0],
tks_w[i][0],
max(tks_w[i - 1][1], tks_w[i][1]) * 2,
)
)
if not q:
q.append(txt)
return Q("bool",
must=Q("query_string", fields=self.flds,
type="best_fields", query=" ".join(q),
boost=1)#, minimum_should_match=min_match)
), list(set([t for t in txt.split(" ") if t]))
query = " ".join(q)
return MatchTextExpr(
self.query_fields, query, 100
), tks
def need_fine_grained_tokenize(tk):
if len(tk) < 3:
@ -89,7 +103,7 @@ class EsQueryer:
return False
return True
txt = EsQueryer.rmWWW(txt)
txt = FulltextQueryer.rmWWW(txt)
qs, keywords = [], []
for tt in self.tw.split(txt)[:256]: # .split(" "):
if not tt:
@ -101,65 +115,71 @@ class EsQueryer:
logging.info(json.dumps(twts, ensure_ascii=False))
tms = []
for tk, w in sorted(twts, key=lambda x: x[1] * -1):
sm = rag_tokenizer.fine_grained_tokenize(tk).split(" ") if need_fine_grained_tokenize(tk) else []
sm = (
rag_tokenizer.fine_grained_tokenize(tk).split(" ")
if need_fine_grained_tokenize(tk)
else []
)
sm = [
re.sub(
r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
"",
m) for m in sm]
sm = [EsQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
m,
)
for m in sm
]
sm = [FulltextQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
sm = [m for m in sm if len(m) > 1]
keywords.append(re.sub(r"[ \\\"']+", "", tk))
keywords.extend(sm)
if len(keywords) >= 12: break
if len(keywords) >= 12:
break
tk_syns = self.syn.lookup(tk)
tk = EsQueryer.subSpecialChar(tk)
tk = FulltextQueryer.subSpecialChar(tk)
if tk.find(" ") > 0:
tk = "\"%s\"" % tk
tk = '"%s"' % tk
if tk_syns:
tk = f"({tk} %s)" % " ".join(tk_syns)
if sm:
tk = f"{tk} OR \"%s\" OR (\"%s\"~2)^0.5" % (
" ".join(sm), " ".join(sm))
tk = f'{tk} OR "%s" OR ("%s"~2)^0.5' % (" ".join(sm), " ".join(sm))
if tk.strip():
tms.append((tk, w))
tms = " ".join([f"({t})^{w}" for t, w in tms])
if len(twts) > 1:
tms += f" (\"%s\"~4)^1.5" % (" ".join([t for t, _ in twts]))
tms += ' ("%s"~4)^1.5' % (" ".join([t for t, _ in twts]))
if re.match(r"[0-9a-z ]+$", tt):
tms = f"(\"{tt}\" OR \"%s\")" % rag_tokenizer.tokenize(tt)
tms = f'("{tt}" OR "%s")' % rag_tokenizer.tokenize(tt)
syns = " OR ".join(
["\"%s\"^0.7" % EsQueryer.subSpecialChar(rag_tokenizer.tokenize(s)) for s in syns])
[
'"%s"^0.7'
% FulltextQueryer.subSpecialChar(rag_tokenizer.tokenize(s))
for s in syns
]
)
if syns:
tms = f"({tms})^5 OR ({syns})^0.7"
qs.append(tms)
flds = copy.deepcopy(self.flds)
mst = []
if qs:
mst.append(
Q("query_string", fields=flds, type="best_fields",
query=" OR ".join([f"({t})" for t in qs if t]), boost=1, minimum_should_match=min_match)
)
query = " OR ".join([f"({t})" for t in qs if t])
return MatchTextExpr(
self.query_fields, query, 100, {"minimum_should_match": min_match}
), keywords
return None, keywords
return Q("bool",
must=mst,
), list(set(keywords))
def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3,
vtweight=0.7):
def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3, vtweight=0.7):
from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
import numpy as np
sims = CosineSimilarity([avec], bvecs)
tksim = self.token_similarity(atks, btkss)
return np.array(sims[0]) * vtweight + \
np.array(tksim) * tkweight, tksim, sims[0]
return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0]
def token_similarity(self, atks, btkss):
def toDict(tks):

View File

@ -14,34 +14,25 @@
# limitations under the License.
#
import json
import re
from copy import deepcopy
from elasticsearch_dsl import Q, Search
import json
from typing import List, Optional, Dict, Union
from dataclasses import dataclass
from rag.settings import es_logger
from rag.settings import doc_store_logger
from rag.utils import rmSpace
from rag.nlp import rag_tokenizer, query, is_english
from rag.nlp import rag_tokenizer, query
import numpy as np
from rag.utils.doc_store_conn import DocStoreConnection, MatchDenseExpr, FusionExpr, OrderByExpr
def index_name(uid): return f"ragflow_{uid}"
class Dealer:
def __init__(self, es):
self.qryr = query.EsQueryer(es)
self.qryr.flds = [
"title_tks^10",
"title_sm_tks^5",
"important_kwd^30",
"important_tks^20",
"content_ltks^2",
"content_sm_ltks"]
self.es = es
def __init__(self, dataStore: DocStoreConnection):
self.qryr = query.FulltextQueryer()
self.dataStore = dataStore
@dataclass
class SearchResult:
@ -54,170 +45,99 @@ class Dealer:
keywords: Optional[List[str]] = None
group_docs: List[List] = None
def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
qv, c = emb_mdl.encode_queries(txt)
return {
"field": "q_%d_vec" % len(qv),
"k": topk,
"similarity": sim,
"num_candidates": topk * 2,
"query_vector": [float(v) for v in qv]
}
def get_vector(self, txt, emb_mdl, topk=10, similarity=0.1):
qv, _ = emb_mdl.encode_queries(txt)
embedding_data = [float(v) for v in qv]
vector_column_name = f"q_{len(embedding_data)}_vec"
return MatchDenseExpr(vector_column_name, embedding_data, 'float', 'cosine', topk, {"similarity": similarity})
def _add_filters(self, bqry, req):
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
if req.get("doc_ids"):
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
if req.get("knowledge_graph_kwd"):
bqry.filter.append(Q("terms", knowledge_graph_kwd=req["knowledge_graph_kwd"]))
if "available_int" in req:
if req["available_int"] == 0:
bqry.filter.append(Q("range", available_int={"lt": 1}))
else:
bqry.filter.append(
Q("bool", must_not=Q("range", available_int={"lt": 1})))
return bqry
def get_filters(self, req):
condition = dict()
for key, field in {"kb_ids": "kb_id", "doc_ids": "doc_id"}.items():
if key in req and req[key] is not None:
condition[field] = req[key]
# TODO(yzc): `available_int` is nullable however infinity doesn't support nullable columns.
for key in ["knowledge_graph_kwd"]:
if key in req and req[key] is not None:
condition[key] = req[key]
return condition
def search(self, req, idxnms, emb_mdl=None, highlight=False):
qst = req.get("question", "")
bqry, keywords = self.qryr.question(qst, min_match="30%")
bqry = self._add_filters(bqry, req)
bqry.boost = 0.05
def search(self, req, idx_names: list[str], kb_ids: list[str], emb_mdl=None, highlight = False):
filters = self.get_filters(req)
orderBy = OrderByExpr()
s = Search()
pg = int(req.get("page", 1)) - 1
topk = int(req.get("topk", 1024))
ps = int(req.get("size", topk))
offset, limit = pg * ps, (pg + 1) * ps
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd",
"image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int", "knowledge_graph_kwd",
"q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
s = s.highlight("content_ltks")
s = s.highlight("title_ltks")
if not qst:
if not req.get("sort"):
s = s.sort(
#{"create_time": {"order": "desc", "unmapped_type": "date"}},
{"create_timestamp_flt": {
"order": "desc", "unmapped_type": "float"}}
)
else:
s = s.sort(
{"page_num_int": {"order": "asc", "unmapped_type": "float",
"mode": "avg", "numeric_type": "double"}},
{"top_int": {"order": "asc", "unmapped_type": "float",
"mode": "avg", "numeric_type": "double"}},
#{"create_time": {"order": "desc", "unmapped_type": "date"}},
{"create_timestamp_flt": {
"order": "desc", "unmapped_type": "float"}}
)
if qst:
s = s.highlight_options(
fragment_size=120,
number_of_fragments=5,
boundary_scanner_locale="zh-CN",
boundary_scanner="SENTENCE",
boundary_chars=",./;:\\!(),。?:!……()——、"
)
s = s.to_dict()
q_vec = []
if req.get("vector"):
assert emb_mdl, "No embedding model selected"
s["knn"] = self._vector(
qst, emb_mdl, req.get(
"similarity", 0.1), topk)
s["knn"]["filter"] = bqry.to_dict()
if not highlight and "highlight" in s:
del s["highlight"]
q_vec = s["knn"]["query_vector"]
es_logger.info("【Q】: {}".format(json.dumps(s)))
res = self.es.search(deepcopy(s), idxnms=idxnms, timeout="600s", src=src)
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
if self.es.getTotal(res) == 0 and "knn" in s:
bqry, _ = self.qryr.question(qst, min_match="10%")
if req.get("doc_ids"):
bqry = Q("bool", must=[])
bqry = self._add_filters(bqry, req)
s["query"] = bqry.to_dict()
s["knn"]["filter"] = bqry.to_dict()
s["knn"]["similarity"] = 0.17
res = self.es.search(s, idxnms=idxnms, timeout="600s", src=src)
es_logger.info("【Q】: {}".format(json.dumps(s)))
"doc_id", "position_list", "knowledge_graph_kwd",
"available_int", "content_with_weight"])
kwds = set([])
for k in keywords:
kwds.add(k)
for kk in rag_tokenizer.fine_grained_tokenize(k).split(" "):
if len(kk) < 2:
continue
if kk in kwds:
continue
kwds.add(kk)
aggs = self.getAggregation(res, "docnm_kwd")
qst = req.get("question", "")
q_vec = []
if not qst:
if req.get("sort"):
orderBy.desc("create_timestamp_flt")
res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
doc_store_logger.info("Dealer.search TOTAL: {}".format(total))
else:
highlightFields = ["content_ltks", "title_tks"] if highlight else []
matchText, keywords = self.qryr.question(qst, min_match=0.3)
if emb_mdl is None:
matchExprs = [matchText]
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
doc_store_logger.info("Dealer.search TOTAL: {}".format(total))
else:
matchDense = self.get_vector(qst, emb_mdl, topk, req.get("similarity", 0.1))
q_vec = matchDense.embedding_data
src.append(f"q_{len(q_vec)}_vec")
fusionExpr = FusionExpr("weighted_sum", topk, {"weights": "0.05, 0.95"})
matchExprs = [matchText, matchDense, fusionExpr]
res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
doc_store_logger.info("Dealer.search TOTAL: {}".format(total))
# If result is empty, try again with lower min_match
if total == 0:
matchText, _ = self.qryr.question(qst, min_match=0.1)
if "doc_ids" in filters:
del filters["doc_ids"]
matchDense.extra_options["similarity"] = 0.17
res = self.dataStore.search(src, highlightFields, filters, [matchText, matchDense, fusionExpr], orderBy, offset, limit, idx_names, kb_ids)
total=self.dataStore.getTotal(res)
doc_store_logger.info("Dealer.search 2 TOTAL: {}".format(total))
for k in keywords:
kwds.add(k)
for kk in rag_tokenizer.fine_grained_tokenize(k).split(" "):
if len(kk) < 2:
continue
if kk in kwds:
continue
kwds.add(kk)
doc_store_logger.info(f"TOTAL: {total}")
ids=self.dataStore.getChunkIds(res)
keywords=list(kwds)
highlight = self.dataStore.getHighlight(res, keywords, "content_with_weight")
aggs = self.dataStore.getAggregation(res, "docnm_kwd")
return self.SearchResult(
total=self.es.getTotal(res),
ids=self.es.getDocIds(res),
total=total,
ids=ids,
query_vector=q_vec,
aggregation=aggs,
highlight=self.getHighlight(res, keywords, "content_with_weight"),
field=self.getFields(res, src),
keywords=list(kwds)
highlight=highlight,
field=self.dataStore.getFields(res, src),
keywords=keywords
)
def getAggregation(self, res, g):
if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
return
bkts = res["aggregations"]["aggs_" + g]["buckets"]
return [(b["key"], b["doc_count"]) for b in bkts]
def getHighlight(self, res, keywords, fieldnm):
ans = {}
for d in res["hits"]["hits"]:
hlts = d.get("highlight")
if not hlts:
continue
txt = "...".join([a for a in list(hlts.items())[0][1]])
if not is_english(txt.split(" ")):
ans[d["_id"]] = txt
continue
txt = d["_source"][fieldnm]
txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE|re.MULTILINE)
txts = []
for t in re.split(r"[.?!;\n]", txt):
for w in keywords:
t = re.sub(r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])"%re.escape(w), r"\1<em>\2</em>\3", t, flags=re.IGNORECASE|re.MULTILINE)
if not re.search(r"<em>[^<>]+</em>", t, flags=re.IGNORECASE|re.MULTILINE): continue
txts.append(t)
ans[d["_id"]] = "...".join(txts) if txts else "...".join([a for a in list(hlts.items())[0][1]])
return ans
def getFields(self, sres, flds):
res = {}
if not flds:
return {}
for d in self.es.getSource(sres):
m = {n: d.get(n) for n in flds if d.get(n) is not None}
for n, v in m.items():
if isinstance(v, type([])):
m[n] = "\t".join([str(vv) if not isinstance(
vv, list) else "\t".join([str(vvv) for vvv in vv]) for vv in v])
continue
if not isinstance(v, type("")):
m[n] = str(m[n])
#if n.find("tks") > 0:
# m[n] = rmSpace(m[n])
if m:
res[d["id"]] = m
return res
@staticmethod
def trans2floats(txt):
return [float(t) for t in txt.split("\t")]
@ -260,7 +180,7 @@ class Dealer:
continue
idx.append(i)
pieces_.append(t)
es_logger.info("{} => {}".format(answer, pieces_))
doc_store_logger.info("{} => {}".format(answer, pieces_))
if not pieces_:
return answer, set([])
@ -281,7 +201,7 @@ class Dealer:
chunks_tks,
tkweight, vtweight)
mx = np.max(sim) * 0.99
es_logger.info("{} SIM: {}".format(pieces_[i], mx))
doc_store_logger.info("{} SIM: {}".format(pieces_[i], mx))
if mx < thr:
continue
cites[idx[i]] = list(
@ -309,9 +229,15 @@ class Dealer:
def rerank(self, sres, query, tkweight=0.3,
vtweight=0.7, cfield="content_ltks"):
_, keywords = self.qryr.question(query)
ins_embd = [
Dealer.trans2floats(
sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
vector_size = len(sres.query_vector)
vector_column = f"q_{vector_size}_vec"
zero_vector = [0.0] * vector_size
ins_embd = []
for chunk_id in sres.ids:
vector = sres.field[chunk_id].get(vector_column, zero_vector)
if isinstance(vector, str):
vector = [float(v) for v in vector.split("\t")]
ins_embd.append(vector)
if not ins_embd:
return [], [], []
@ -377,7 +303,7 @@ class Dealer:
if isinstance(tenant_ids, str):
tenant_ids = tenant_ids.split(",")
sres = self.search(req, [index_name(tid) for tid in tenant_ids], embd_mdl, highlight)
sres = self.search(req, [index_name(tid) for tid in tenant_ids], kb_ids, embd_mdl, highlight)
ranks["total"] = sres.total
if page <= RERANK_PAGE_LIMIT:
@ -393,6 +319,8 @@ class Dealer:
idx = list(range(len(sres.ids)))
dim = len(sres.query_vector)
vector_column = f"q_{dim}_vec"
zero_vector = [0.0] * dim
for i in idx:
if sim[i] < similarity_threshold:
break
@ -401,34 +329,32 @@ class Dealer:
continue
break
id = sres.ids[i]
dnm = sres.field[id]["docnm_kwd"]
did = sres.field[id]["doc_id"]
chunk = sres.field[id]
dnm = chunk["docnm_kwd"]
did = chunk["doc_id"]
position_list = chunk.get("position_list", "[]")
if not position_list:
position_list = "[]"
d = {
"chunk_id": id,
"content_ltks": sres.field[id]["content_ltks"],
"content_with_weight": sres.field[id]["content_with_weight"],
"doc_id": sres.field[id]["doc_id"],
"content_ltks": chunk["content_ltks"],
"content_with_weight": chunk["content_with_weight"],
"doc_id": chunk["doc_id"],
"docnm_kwd": dnm,
"kb_id": sres.field[id]["kb_id"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"kb_id": chunk["kb_id"],
"important_kwd": chunk.get("important_kwd", []),
"image_id": chunk.get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i],
"vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim))),
"positions": sres.field[id].get("position_int", "").split("\t")
"vector": chunk.get(vector_column, zero_vector),
"positions": json.loads(position_list)
}
if highlight:
if id in sres.highlight:
d["highlight"] = rmSpace(sres.highlight[id])
else:
d["highlight"] = d["content_with_weight"]
if len(d["positions"]) % 5 == 0:
poss = []
for i in range(0, len(d["positions"]), 5):
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
d["positions"] = poss
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
@ -442,39 +368,11 @@ class Dealer:
return ranks
def sql_retrieval(self, sql, fetch_size=128, format="json"):
from api.settings import chat_logger
sql = re.sub(r"[ `]+", " ", sql)
sql = sql.replace("%", "")
es_logger.info(f"Get es sql: {sql}")
replaces = []
for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
fld, v = r.group(1), r.group(3)
match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(
fld, rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(v)))
replaces.append(
("{}{}'{}'".format(
r.group(1),
r.group(2),
r.group(3)),
match))
tbl = self.dataStore.sql(sql, fetch_size, format)
return tbl
for p, r in replaces:
sql = sql.replace(p, r, 1)
chat_logger.info(f"To es: {sql}")
try:
tbl = self.es.sql(sql, fetch_size, format)
return tbl
except Exception as e:
chat_logger.error(f"SQL failure: {sql} =>" + str(e))
return {"error": str(e)}
def chunk_list(self, doc_id, tenant_id, max_count=1024, fields=["docnm_kwd", "content_with_weight", "img_id"]):
s = Search()
s = s.query(Q("match", doc_id=doc_id))[0:max_count]
s = s.to_dict()
es_res = self.es.search(s, idxnms=index_name(tenant_id), timeout="600s", src=fields)
res = []
for index, chunk in enumerate(es_res['hits']['hits']):
res.append({fld: chunk['_source'].get(fld) for fld in fields})
return res
def chunk_list(self, doc_id: str, tenant_id: str, kb_ids: list[str], max_count=1024, fields=["docnm_kwd", "content_with_weight", "img_id"]):
condition = {"doc_id": doc_id}
res = self.dataStore.search(fields, [], condition, [], OrderByExpr(), 0, max_count, index_name(tenant_id), kb_ids)
dict_chunks = self.dataStore.getFields(res, fields)
return dict_chunks.values()