mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Integration with Infinity (#2894)
### What problem does this PR solve? Integration with Infinity - Replaced ELASTICSEARCH with dataStoreConn - Renamed deleteByQuery with delete - Renamed bulk to upsertBulk - getHighlight, getAggregation - Fix KGSearch.search - Moved Dealer.sql_retrieval to es_conn.py ### Type of change - [x] Refactoring
This commit is contained in:
590
rag/benchmark.py
590
rag/benchmark.py
@ -1,280 +1,310 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import json
|
||||
import os
|
||||
from collections import defaultdict
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from copy import deepcopy
|
||||
|
||||
from api.db import LLMType
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.settings import retrievaler
|
||||
from api.utils import get_uuid
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from rag.nlp import tokenize, search
|
||||
from rag.utils.es_conn import ELASTICSEARCH
|
||||
from ranx import evaluate
|
||||
import pandas as pd
|
||||
from tqdm import tqdm
|
||||
from ranx import Qrels, Run
|
||||
|
||||
|
||||
class Benchmark:
|
||||
def __init__(self, kb_id):
|
||||
e, self.kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
self.similarity_threshold = self.kb.similarity_threshold
|
||||
self.vector_similarity_weight = self.kb.vector_similarity_weight
|
||||
self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language)
|
||||
|
||||
def _get_benchmarks(self, query, dataset_idxnm, count=16):
|
||||
|
||||
req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
|
||||
sres = retrievaler.search(req, search.index_name(dataset_idxnm), self.embd_mdl)
|
||||
return sres
|
||||
|
||||
def _get_retrieval(self, qrels, dataset_idxnm):
|
||||
run = defaultdict(dict)
|
||||
query_list = list(qrels.keys())
|
||||
for query in query_list:
|
||||
|
||||
ranks = retrievaler.retrieval(query, self.embd_mdl,
|
||||
dataset_idxnm, [self.kb.id], 1, 30,
|
||||
0.0, self.vector_similarity_weight)
|
||||
for c in ranks["chunks"]:
|
||||
if "vector" in c:
|
||||
del c["vector"]
|
||||
run[query][c["chunk_id"]] = c["similarity"]
|
||||
|
||||
return run
|
||||
|
||||
def embedding(self, docs, batch_size=16):
|
||||
vects = []
|
||||
cnts = [d["content_with_weight"] for d in docs]
|
||||
for i in range(0, len(cnts), batch_size):
|
||||
vts, c = self.embd_mdl.encode(cnts[i: i + batch_size])
|
||||
vects.extend(vts.tolist())
|
||||
assert len(docs) == len(vects)
|
||||
for i, d in enumerate(docs):
|
||||
v = vects[i]
|
||||
d["q_%d_vec" % len(v)] = v
|
||||
return docs
|
||||
|
||||
@staticmethod
|
||||
def init_kb(index_name):
|
||||
idxnm = search.index_name(index_name)
|
||||
if ELASTICSEARCH.indexExist(idxnm):
|
||||
ELASTICSEARCH.deleteIdx(search.index_name(index_name))
|
||||
|
||||
return ELASTICSEARCH.createIdx(idxnm, json.load(
|
||||
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
|
||||
|
||||
def ms_marco_index(self, file_path, index_name):
|
||||
qrels = defaultdict(dict)
|
||||
texts = defaultdict(dict)
|
||||
docs = []
|
||||
filelist = os.listdir(file_path)
|
||||
self.init_kb(index_name)
|
||||
|
||||
max_workers = int(os.environ.get('MAX_WORKERS', 3))
|
||||
exe = ThreadPoolExecutor(max_workers=max_workers)
|
||||
threads = []
|
||||
|
||||
def slow_actions(es_docs, idx_nm):
|
||||
es_docs = self.embedding(es_docs)
|
||||
ELASTICSEARCH.bulk(es_docs, idx_nm)
|
||||
return True
|
||||
|
||||
for dir in filelist:
|
||||
data = pd.read_parquet(os.path.join(file_path, dir))
|
||||
for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + dir):
|
||||
|
||||
query = data.iloc[i]['query']
|
||||
for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
|
||||
d = {
|
||||
"id": get_uuid(),
|
||||
"kb_id": self.kb.id,
|
||||
"docnm_kwd": "xxxxx",
|
||||
"doc_id": "ksksks"
|
||||
}
|
||||
tokenize(d, text, "english")
|
||||
docs.append(d)
|
||||
texts[d["id"]] = text
|
||||
qrels[query][d["id"]] = int(rel)
|
||||
if len(docs) >= 32:
|
||||
threads.append(
|
||||
exe.submit(slow_actions, deepcopy(docs), search.index_name(index_name)))
|
||||
docs = []
|
||||
|
||||
threads.append(
|
||||
exe.submit(slow_actions, deepcopy(docs), search.index_name(index_name)))
|
||||
|
||||
for i in tqdm(range(len(threads)), colour="red", desc="Indexing:" + dir):
|
||||
if not threads[i].result().output:
|
||||
print("Indexing error...")
|
||||
|
||||
return qrels, texts
|
||||
|
||||
def trivia_qa_index(self, file_path, index_name):
|
||||
qrels = defaultdict(dict)
|
||||
texts = defaultdict(dict)
|
||||
docs = []
|
||||
filelist = os.listdir(file_path)
|
||||
for dir in filelist:
|
||||
data = pd.read_parquet(os.path.join(file_path, dir))
|
||||
for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
|
||||
query = data.iloc[i]['question']
|
||||
for rel, text in zip(data.iloc[i]["search_results"]['rank'],
|
||||
data.iloc[i]["search_results"]['search_context']):
|
||||
d = {
|
||||
"id": get_uuid(),
|
||||
"kb_id": self.kb.id,
|
||||
"docnm_kwd": "xxxxx",
|
||||
"doc_id": "ksksks"
|
||||
}
|
||||
tokenize(d, text, "english")
|
||||
docs.append(d)
|
||||
texts[d["id"]] = text
|
||||
qrels[query][d["id"]] = int(rel)
|
||||
if len(docs) >= 32:
|
||||
docs = self.embedding(docs)
|
||||
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
|
||||
docs = []
|
||||
|
||||
docs = self.embedding(docs)
|
||||
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
|
||||
return qrels, texts
|
||||
|
||||
def miracl_index(self, file_path, corpus_path, index_name):
|
||||
|
||||
corpus_total = {}
|
||||
for corpus_file in os.listdir(corpus_path):
|
||||
tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
|
||||
for index, i in tmp_data.iterrows():
|
||||
corpus_total[i['docid']] = i['text']
|
||||
|
||||
topics_total = {}
|
||||
for topics_file in os.listdir(os.path.join(file_path, 'topics')):
|
||||
if 'test' in topics_file:
|
||||
continue
|
||||
tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
|
||||
for index, i in tmp_data.iterrows():
|
||||
topics_total[i['qid']] = i['query']
|
||||
|
||||
qrels = defaultdict(dict)
|
||||
texts = defaultdict(dict)
|
||||
docs = []
|
||||
for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
|
||||
if 'test' in qrels_file:
|
||||
continue
|
||||
|
||||
tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
|
||||
names=['qid', 'Q0', 'docid', 'relevance'])
|
||||
for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
|
||||
query = topics_total[tmp_data.iloc[i]['qid']]
|
||||
text = corpus_total[tmp_data.iloc[i]['docid']]
|
||||
rel = tmp_data.iloc[i]['relevance']
|
||||
d = {
|
||||
"id": get_uuid(),
|
||||
"kb_id": self.kb.id,
|
||||
"docnm_kwd": "xxxxx",
|
||||
"doc_id": "ksksks"
|
||||
}
|
||||
tokenize(d, text, 'english')
|
||||
docs.append(d)
|
||||
texts[d["id"]] = text
|
||||
qrels[query][d["id"]] = int(rel)
|
||||
if len(docs) >= 32:
|
||||
docs = self.embedding(docs)
|
||||
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
|
||||
docs = []
|
||||
|
||||
docs = self.embedding(docs)
|
||||
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
|
||||
|
||||
return qrels, texts
|
||||
|
||||
def save_results(self, qrels, run, texts, dataset, file_path):
|
||||
keep_result = []
|
||||
run_keys = list(run.keys())
|
||||
for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
|
||||
key = run_keys[run_i]
|
||||
keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
|
||||
'ndcg@10': evaluate(Qrels({key: qrels[key]}), Run({key: run[key]}), "ndcg@10")})
|
||||
keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
|
||||
with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
|
||||
f.write('## Score For Every Query\n')
|
||||
for keep_result_i in keep_result:
|
||||
f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
|
||||
scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
|
||||
scores = sorted(scores, key=lambda kk: kk[1])
|
||||
for score in scores[:10]:
|
||||
f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
|
||||
json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+"), indent=2)
|
||||
json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+"), indent=2)
|
||||
print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
|
||||
|
||||
def __call__(self, dataset, file_path, miracl_corpus=''):
|
||||
if dataset == "ms_marco_v1.1":
|
||||
qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
|
||||
run = self._get_retrieval(qrels, "benchmark_ms_marco_v1.1")
|
||||
print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr"]))
|
||||
self.save_results(qrels, run, texts, dataset, file_path)
|
||||
if dataset == "trivia_qa":
|
||||
qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
|
||||
run = self._get_retrieval(qrels, "benchmark_trivia_qa")
|
||||
print(dataset, evaluate((qrels), Run(run), ["ndcg@10", "map@5", "mrr"]))
|
||||
self.save_results(qrels, run, texts, dataset, file_path)
|
||||
if dataset == "miracl":
|
||||
for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
|
||||
'yo', 'zh']:
|
||||
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
|
||||
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
|
||||
continue
|
||||
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
|
||||
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
|
||||
continue
|
||||
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
|
||||
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
|
||||
continue
|
||||
if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
|
||||
print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
|
||||
continue
|
||||
qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
|
||||
os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
|
||||
"benchmark_miracl_" + lang)
|
||||
run = self._get_retrieval(qrels, "benchmark_miracl_" + lang)
|
||||
print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr"]))
|
||||
self.save_results(qrels, run, texts, dataset, file_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print('*****************RAGFlow Benchmark*****************')
|
||||
kb_id = input('Please input kb_id:\n')
|
||||
ex = Benchmark(kb_id)
|
||||
dataset = input(
|
||||
'RAGFlow Benchmark Support:\n\tms_marco_v1.1:<https://huggingface.co/datasets/microsoft/ms_marco>\n\ttrivia_qa:<https://huggingface.co/datasets/mandarjoshi/trivia_qa>\n\tmiracl:<https://huggingface.co/datasets/miracl/miracl>\nPlease input dataset choice:\n')
|
||||
if dataset in ['ms_marco_v1.1', 'trivia_qa']:
|
||||
if dataset == "ms_marco_v1.1":
|
||||
print("Notice: Please provide the ms_marco_v1.1 dataset only. ms_marco_v2.1 is not supported!")
|
||||
dataset_path = input('Please input ' + dataset + ' dataset path:\n')
|
||||
ex(dataset, dataset_path)
|
||||
elif dataset == 'miracl':
|
||||
dataset_path = input('Please input ' + dataset + ' dataset path:\n')
|
||||
corpus_path = input('Please input ' + dataset + '-corpus dataset path:\n')
|
||||
ex(dataset, dataset_path, miracl_corpus=corpus_path)
|
||||
else:
|
||||
print("Dataset: ", dataset, "not supported!")
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import argparse
|
||||
from collections import defaultdict
|
||||
|
||||
from api.db import LLMType
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.settings import retrievaler, docStoreConn
|
||||
from api.utils import get_uuid
|
||||
from rag.nlp import tokenize, search
|
||||
from ranx import evaluate
|
||||
import pandas as pd
|
||||
from tqdm import tqdm
|
||||
|
||||
global max_docs
|
||||
max_docs = sys.maxsize
|
||||
|
||||
class Benchmark:
|
||||
def __init__(self, kb_id):
|
||||
self.kb_id = kb_id
|
||||
e, self.kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
self.similarity_threshold = self.kb.similarity_threshold
|
||||
self.vector_similarity_weight = self.kb.vector_similarity_weight
|
||||
self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language)
|
||||
self.tenant_id = ''
|
||||
self.index_name = ''
|
||||
self.initialized_index = False
|
||||
|
||||
def _get_retrieval(self, qrels):
|
||||
# Need to wait for the ES and Infinity index to be ready
|
||||
time.sleep(20)
|
||||
run = defaultdict(dict)
|
||||
query_list = list(qrels.keys())
|
||||
for query in query_list:
|
||||
ranks = retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30,
|
||||
0.0, self.vector_similarity_weight)
|
||||
if len(ranks["chunks"]) == 0:
|
||||
print(f"deleted query: {query}")
|
||||
del qrels[query]
|
||||
continue
|
||||
for c in ranks["chunks"]:
|
||||
if "vector" in c:
|
||||
del c["vector"]
|
||||
run[query][c["chunk_id"]] = c["similarity"]
|
||||
return run
|
||||
|
||||
def embedding(self, docs, batch_size=16):
|
||||
vects = []
|
||||
cnts = [d["content_with_weight"] for d in docs]
|
||||
for i in range(0, len(cnts), batch_size):
|
||||
vts, c = self.embd_mdl.encode(cnts[i: i + batch_size])
|
||||
vects.extend(vts.tolist())
|
||||
assert len(docs) == len(vects)
|
||||
vector_size = 0
|
||||
for i, d in enumerate(docs):
|
||||
v = vects[i]
|
||||
vector_size = len(v)
|
||||
d["q_%d_vec" % len(v)] = v
|
||||
return docs, vector_size
|
||||
|
||||
def init_index(self, vector_size: int):
|
||||
if self.initialized_index:
|
||||
return
|
||||
if docStoreConn.indexExist(self.index_name, self.kb_id):
|
||||
docStoreConn.deleteIdx(self.index_name, self.kb_id)
|
||||
docStoreConn.createIdx(self.index_name, self.kb_id, vector_size)
|
||||
self.initialized_index = True
|
||||
|
||||
def ms_marco_index(self, file_path, index_name):
|
||||
qrels = defaultdict(dict)
|
||||
texts = defaultdict(dict)
|
||||
docs_count = 0
|
||||
docs = []
|
||||
filelist = sorted(os.listdir(file_path))
|
||||
|
||||
for fn in filelist:
|
||||
if docs_count >= max_docs:
|
||||
break
|
||||
if not fn.endswith(".parquet"):
|
||||
continue
|
||||
data = pd.read_parquet(os.path.join(file_path, fn))
|
||||
for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + fn):
|
||||
if docs_count >= max_docs:
|
||||
break
|
||||
query = data.iloc[i]['query']
|
||||
for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
|
||||
d = {
|
||||
"id": get_uuid(),
|
||||
"kb_id": self.kb.id,
|
||||
"docnm_kwd": "xxxxx",
|
||||
"doc_id": "ksksks"
|
||||
}
|
||||
tokenize(d, text, "english")
|
||||
docs.append(d)
|
||||
texts[d["id"]] = text
|
||||
qrels[query][d["id"]] = int(rel)
|
||||
if len(docs) >= 32:
|
||||
docs_count += len(docs)
|
||||
docs, vector_size = self.embedding(docs)
|
||||
self.init_index(vector_size)
|
||||
docStoreConn.insert(docs, self.index_name, self.kb_id)
|
||||
docs = []
|
||||
|
||||
if docs:
|
||||
docs, vector_size = self.embedding(docs)
|
||||
self.init_index(vector_size)
|
||||
docStoreConn.insert(docs, self.index_name, self.kb_id)
|
||||
return qrels, texts
|
||||
|
||||
def trivia_qa_index(self, file_path, index_name):
|
||||
qrels = defaultdict(dict)
|
||||
texts = defaultdict(dict)
|
||||
docs_count = 0
|
||||
docs = []
|
||||
filelist = sorted(os.listdir(file_path))
|
||||
for fn in filelist:
|
||||
if docs_count >= max_docs:
|
||||
break
|
||||
if not fn.endswith(".parquet"):
|
||||
continue
|
||||
data = pd.read_parquet(os.path.join(file_path, fn))
|
||||
for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + fn):
|
||||
if docs_count >= max_docs:
|
||||
break
|
||||
query = data.iloc[i]['question']
|
||||
for rel, text in zip(data.iloc[i]["search_results"]['rank'],
|
||||
data.iloc[i]["search_results"]['search_context']):
|
||||
d = {
|
||||
"id": get_uuid(),
|
||||
"kb_id": self.kb.id,
|
||||
"docnm_kwd": "xxxxx",
|
||||
"doc_id": "ksksks"
|
||||
}
|
||||
tokenize(d, text, "english")
|
||||
docs.append(d)
|
||||
texts[d["id"]] = text
|
||||
qrels[query][d["id"]] = int(rel)
|
||||
if len(docs) >= 32:
|
||||
docs_count += len(docs)
|
||||
docs, vector_size = self.embedding(docs)
|
||||
self.init_index(vector_size)
|
||||
docStoreConn.insert(docs,self.index_name)
|
||||
docs = []
|
||||
|
||||
docs, vector_size = self.embedding(docs)
|
||||
self.init_index(vector_size)
|
||||
docStoreConn.insert(docs, self.index_name)
|
||||
return qrels, texts
|
||||
|
||||
def miracl_index(self, file_path, corpus_path, index_name):
|
||||
corpus_total = {}
|
||||
for corpus_file in os.listdir(corpus_path):
|
||||
tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
|
||||
for index, i in tmp_data.iterrows():
|
||||
corpus_total[i['docid']] = i['text']
|
||||
|
||||
topics_total = {}
|
||||
for topics_file in os.listdir(os.path.join(file_path, 'topics')):
|
||||
if 'test' in topics_file:
|
||||
continue
|
||||
tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
|
||||
for index, i in tmp_data.iterrows():
|
||||
topics_total[i['qid']] = i['query']
|
||||
|
||||
qrels = defaultdict(dict)
|
||||
texts = defaultdict(dict)
|
||||
docs_count = 0
|
||||
docs = []
|
||||
for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
|
||||
if 'test' in qrels_file:
|
||||
continue
|
||||
if docs_count >= max_docs:
|
||||
break
|
||||
|
||||
tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
|
||||
names=['qid', 'Q0', 'docid', 'relevance'])
|
||||
for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
|
||||
if docs_count >= max_docs:
|
||||
break
|
||||
query = topics_total[tmp_data.iloc[i]['qid']]
|
||||
text = corpus_total[tmp_data.iloc[i]['docid']]
|
||||
rel = tmp_data.iloc[i]['relevance']
|
||||
d = {
|
||||
"id": get_uuid(),
|
||||
"kb_id": self.kb.id,
|
||||
"docnm_kwd": "xxxxx",
|
||||
"doc_id": "ksksks"
|
||||
}
|
||||
tokenize(d, text, 'english')
|
||||
docs.append(d)
|
||||
texts[d["id"]] = text
|
||||
qrels[query][d["id"]] = int(rel)
|
||||
if len(docs) >= 32:
|
||||
docs_count += len(docs)
|
||||
docs, vector_size = self.embedding(docs)
|
||||
self.init_index(vector_size)
|
||||
docStoreConn.insert(docs, self.index_name)
|
||||
docs = []
|
||||
|
||||
docs, vector_size = self.embedding(docs)
|
||||
self.init_index(vector_size)
|
||||
docStoreConn.insert(docs, self.index_name)
|
||||
return qrels, texts
|
||||
|
||||
def save_results(self, qrels, run, texts, dataset, file_path):
|
||||
keep_result = []
|
||||
run_keys = list(run.keys())
|
||||
for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
|
||||
key = run_keys[run_i]
|
||||
keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
|
||||
'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
|
||||
keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
|
||||
with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
|
||||
f.write('## Score For Every Query\n')
|
||||
for keep_result_i in keep_result:
|
||||
f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
|
||||
scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
|
||||
scores = sorted(scores, key=lambda kk: kk[1])
|
||||
for score in scores[:10]:
|
||||
f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
|
||||
json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+"), indent=2)
|
||||
json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+"), indent=2)
|
||||
print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
|
||||
|
||||
def __call__(self, dataset, file_path, miracl_corpus=''):
|
||||
if dataset == "ms_marco_v1.1":
|
||||
self.tenant_id = "benchmark_ms_marco_v11"
|
||||
self.index_name = search.index_name(self.tenant_id)
|
||||
qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
|
||||
run = self._get_retrieval(qrels)
|
||||
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
|
||||
self.save_results(qrels, run, texts, dataset, file_path)
|
||||
if dataset == "trivia_qa":
|
||||
self.tenant_id = "benchmark_trivia_qa"
|
||||
self.index_name = search.index_name(self.tenant_id)
|
||||
qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
|
||||
run = self._get_retrieval(qrels)
|
||||
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
|
||||
self.save_results(qrels, run, texts, dataset, file_path)
|
||||
if dataset == "miracl":
|
||||
for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
|
||||
'yo', 'zh']:
|
||||
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
|
||||
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
|
||||
continue
|
||||
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
|
||||
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
|
||||
continue
|
||||
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
|
||||
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
|
||||
continue
|
||||
if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
|
||||
print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
|
||||
continue
|
||||
self.tenant_id = "benchmark_miracl_" + lang
|
||||
self.index_name = search.index_name(self.tenant_id)
|
||||
self.initialized_index = False
|
||||
qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
|
||||
os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
|
||||
"benchmark_miracl_" + lang)
|
||||
run = self._get_retrieval(qrels)
|
||||
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
|
||||
self.save_results(qrels, run, texts, dataset, file_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print('*****************RAGFlow Benchmark*****************')
|
||||
parser = argparse.ArgumentParser(usage="benchmark.py <max_docs> <kb_id> <dataset> <dataset_path> [<miracl_corpus_path>])", description='RAGFlow Benchmark')
|
||||
parser.add_argument('max_docs', metavar='max_docs', type=int, help='max docs to evaluate')
|
||||
parser.add_argument('kb_id', metavar='kb_id', help='knowledgebase id')
|
||||
parser.add_argument('dataset', metavar='dataset', help='dataset name, shall be one of ms_marco_v1.1(https://huggingface.co/datasets/microsoft/ms_marco), trivia_qa(https://huggingface.co/datasets/mandarjoshi/trivia_qa>), miracl(https://huggingface.co/datasets/miracl/miracl')
|
||||
parser.add_argument('dataset_path', metavar='dataset_path', help='dataset path')
|
||||
parser.add_argument('miracl_corpus_path', metavar='miracl_corpus_path', nargs='?', default="", help='miracl corpus path. Only needed when dataset is miracl')
|
||||
|
||||
args = parser.parse_args()
|
||||
max_docs = args.max_docs
|
||||
kb_id = args.kb_id
|
||||
ex = Benchmark(kb_id)
|
||||
|
||||
dataset = args.dataset
|
||||
dataset_path = args.dataset_path
|
||||
|
||||
if dataset == "ms_marco_v1.1" or dataset == "trivia_qa":
|
||||
ex(dataset, dataset_path)
|
||||
elif dataset == "miracl":
|
||||
if len(args) < 5:
|
||||
print('Please input the correct parameters!')
|
||||
exit(1)
|
||||
miracl_corpus_path = args[4]
|
||||
ex(dataset, dataset_path, miracl_corpus=args.miracl_corpus_path)
|
||||
else:
|
||||
print("Dataset: ", dataset, "not supported!")
|
||||
|
||||
Reference in New Issue
Block a user