Integration with Infinity (#2894)

### What problem does this PR solve?

Integration with Infinity

- Replaced ELASTICSEARCH with dataStoreConn
- Renamed deleteByQuery with delete
- Renamed bulk to upsertBulk
- getHighlight, getAggregation
- Fix KGSearch.search
- Moved Dealer.sql_retrieval to es_conn.py


### Type of change

- [x] Refactoring
This commit is contained in:
Zhichang Yu
2024-11-12 14:59:41 +08:00
committed by GitHub
parent 00b6000b76
commit f4c52371ab
42 changed files with 2647 additions and 1878 deletions

View File

@ -18,12 +18,10 @@ import json
from flask import request
from flask_login import login_required, current_user
from elasticsearch_dsl import Q
from api.db.services.dialog_service import keyword_extraction
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import search, rag_tokenizer
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils import rmSpace
from api.db import LLMType, ParserType
from api.db.services.knowledgebase_service import KnowledgebaseService
@ -31,12 +29,11 @@ from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import UserTenantService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.db.services.document_service import DocumentService
from api.settings import RetCode, retrievaler, kg_retrievaler
from api.settings import RetCode, retrievaler, kg_retrievaler, docStoreConn
from api.utils.api_utils import get_json_result
import hashlib
import re
@manager.route('/list', methods=['POST'])
@login_required
@validate_request("doc_id")
@ -53,12 +50,13 @@ def list_chunk():
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(message="Document not found!")
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
query = {
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
}
if "available_int" in req:
query["available_int"] = int(req["available_int"])
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
sres = retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
for id in sres.ids:
d = {
@ -69,16 +67,12 @@ def list_chunk():
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"image_id": sres.field[id].get("img_id", ""),
"available_int": sres.field[id].get("available_int", 1),
"positions": sres.field[id].get("position_int", "").split("\t")
"positions": json.loads(sres.field[id].get("position_list", "[]")),
}
if len(d["positions"]) % 5 == 0:
poss = []
for i in range(0, len(d["positions"]), 5):
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
d["positions"] = poss
assert isinstance(d["positions"], list)
assert len(d["positions"])==0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
res["chunks"].append(d)
return get_json_result(data=res)
except Exception as e:
@ -96,22 +90,20 @@ def get():
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(message="Tenant not found!")
res = ELASTICSEARCH.get(
chunk_id, search.index_name(
tenants[0].tenant_id))
if not res.get("found"):
tenant_id = tenants[0].tenant_id
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
chunk = docStoreConn.get(chunk_id, search.index_name(tenant_id), kb_ids)
if chunk is None:
return server_error_response("Chunk not found")
id = res["_id"]
res = res["_source"]
res["chunk_id"] = id
k = []
for n in res.keys():
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
k.append(n)
for n in k:
del res[n]
del chunk[n]
return get_json_result(data=res)
return get_json_result(data=chunk)
except Exception as e:
if str(e).find("NotFoundError") >= 0:
return get_json_result(data=False, message='Chunk not found!',
@ -162,7 +154,7 @@ def set():
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -174,11 +166,11 @@ def set():
def switch():
req = request.json
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(message="Tenant not found!")
if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
search.index_name(tenant_id)):
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if not docStoreConn.update({"id": req["chunk_ids"]}, {"available_int": int(req["available_int"])},
search.index_name(doc.tenant_id), doc.kb_id):
return get_data_error_result(message="Index updating failure")
return get_json_result(data=True)
except Exception as e:
@ -191,12 +183,11 @@ def switch():
def rm():
req = request.json
try:
if not ELASTICSEARCH.deleteByQuery(
Q("ids", values=req["chunk_ids"]), search.index_name(current_user.id)):
return get_data_error_result(message="Index updating failure")
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if not docStoreConn.delete({"id": req["chunk_ids"]}, search.index_name(current_user.id), doc.kb_id):
return get_data_error_result(message="Index updating failure")
deleted_chunk_ids = req["chunk_ids"]
chunk_number = len(deleted_chunk_ids)
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
@ -239,7 +230,7 @@ def create():
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
DocumentService.increment_chunk_num(
doc.id, doc.kb_id, c, 1, 0)
@ -256,8 +247,9 @@ def retrieval_test():
page = int(req.get("page", 1))
size = int(req.get("size", 30))
question = req["question"]
kb_id = req["kb_id"]
if isinstance(kb_id, str): kb_id = [kb_id]
kb_ids = req["kb_id"]
if isinstance(kb_ids, str):
kb_ids = [kb_ids]
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
@ -265,17 +257,17 @@ def retrieval_test():
try:
tenants = UserTenantService.query(user_id=current_user.id)
for kid in kb_id:
for kb_id in kb_ids:
for tenant in tenants:
if KnowledgebaseService.query(
tenant_id=tenant.tenant_id, id=kid):
tenant_id=tenant.tenant_id, id=kb_id):
break
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_id[0])
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_data_error_result(message="Knowledgebase not found!")
@ -290,7 +282,7 @@ def retrieval_test():
question += keyword_extraction(chat_mdl, question)
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_id, page, size,
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"))
for c in ranks["chunks"]:
@ -309,12 +301,16 @@ def retrieval_test():
@login_required
def knowledge_graph():
doc_id = request.args["doc_id"]
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_data_error_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
req = {
"doc_ids":[doc_id],
"knowledge_graph_kwd": ["graph", "mind_map"]
}
tenant_id = DocumentService.get_tenant_id(doc_id)
sres = retrievaler.search(req, search.index_name(tenant_id))
sres = retrievaler.search(req, search.index_name(tenant_id), kb_ids, doc.kb_id)
obj = {"graph": {}, "mind_map": {}}
for id in sres.ids[:2]:
ty = sres.field[id]["knowledge_graph_kwd"]