mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Integration with Infinity (#2894)
### What problem does this PR solve? Integration with Infinity - Replaced ELASTICSEARCH with dataStoreConn - Renamed deleteByQuery with delete - Renamed bulk to upsertBulk - getHighlight, getAggregation - Fix KGSearch.search - Moved Dealer.sql_retrieval to es_conn.py ### Type of change - [x] Refactoring
This commit is contained in:
@ -18,12 +18,10 @@ import json
|
||||
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
from elasticsearch_dsl import Q
|
||||
|
||||
from api.db.services.dialog_service import keyword_extraction
|
||||
from rag.app.qa import rmPrefix, beAdoc
|
||||
from rag.nlp import search, rag_tokenizer
|
||||
from rag.utils.es_conn import ELASTICSEARCH
|
||||
from rag.utils import rmSpace
|
||||
from api.db import LLMType, ParserType
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
@ -31,12 +29,11 @@ from api.db.services.llm_service import LLMBundle
|
||||
from api.db.services.user_service import UserTenantService
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.settings import RetCode, retrievaler, kg_retrievaler
|
||||
from api.settings import RetCode, retrievaler, kg_retrievaler, docStoreConn
|
||||
from api.utils.api_utils import get_json_result
|
||||
import hashlib
|
||||
import re
|
||||
|
||||
|
||||
@manager.route('/list', methods=['POST'])
|
||||
@login_required
|
||||
@validate_request("doc_id")
|
||||
@ -53,12 +50,13 @@ def list_chunk():
|
||||
e, doc = DocumentService.get_by_id(doc_id)
|
||||
if not e:
|
||||
return get_data_error_result(message="Document not found!")
|
||||
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
|
||||
query = {
|
||||
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
|
||||
}
|
||||
if "available_int" in req:
|
||||
query["available_int"] = int(req["available_int"])
|
||||
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
|
||||
sres = retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
|
||||
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
|
||||
for id in sres.ids:
|
||||
d = {
|
||||
@ -69,16 +67,12 @@ def list_chunk():
|
||||
"doc_id": sres.field[id]["doc_id"],
|
||||
"docnm_kwd": sres.field[id]["docnm_kwd"],
|
||||
"important_kwd": sres.field[id].get("important_kwd", []),
|
||||
"img_id": sres.field[id].get("img_id", ""),
|
||||
"image_id": sres.field[id].get("img_id", ""),
|
||||
"available_int": sres.field[id].get("available_int", 1),
|
||||
"positions": sres.field[id].get("position_int", "").split("\t")
|
||||
"positions": json.loads(sres.field[id].get("position_list", "[]")),
|
||||
}
|
||||
if len(d["positions"]) % 5 == 0:
|
||||
poss = []
|
||||
for i in range(0, len(d["positions"]), 5):
|
||||
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
|
||||
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
|
||||
d["positions"] = poss
|
||||
assert isinstance(d["positions"], list)
|
||||
assert len(d["positions"])==0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
|
||||
res["chunks"].append(d)
|
||||
return get_json_result(data=res)
|
||||
except Exception as e:
|
||||
@ -96,22 +90,20 @@ def get():
|
||||
tenants = UserTenantService.query(user_id=current_user.id)
|
||||
if not tenants:
|
||||
return get_data_error_result(message="Tenant not found!")
|
||||
res = ELASTICSEARCH.get(
|
||||
chunk_id, search.index_name(
|
||||
tenants[0].tenant_id))
|
||||
if not res.get("found"):
|
||||
tenant_id = tenants[0].tenant_id
|
||||
|
||||
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
|
||||
chunk = docStoreConn.get(chunk_id, search.index_name(tenant_id), kb_ids)
|
||||
if chunk is None:
|
||||
return server_error_response("Chunk not found")
|
||||
id = res["_id"]
|
||||
res = res["_source"]
|
||||
res["chunk_id"] = id
|
||||
k = []
|
||||
for n in res.keys():
|
||||
for n in chunk.keys():
|
||||
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
|
||||
k.append(n)
|
||||
for n in k:
|
||||
del res[n]
|
||||
del chunk[n]
|
||||
|
||||
return get_json_result(data=res)
|
||||
return get_json_result(data=chunk)
|
||||
except Exception as e:
|
||||
if str(e).find("NotFoundError") >= 0:
|
||||
return get_json_result(data=False, message='Chunk not found!',
|
||||
@ -162,7 +154,7 @@ def set():
|
||||
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
|
||||
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
|
||||
d["q_%d_vec" % len(v)] = v.tolist()
|
||||
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
|
||||
docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
|
||||
return get_json_result(data=True)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
@ -174,11 +166,11 @@ def set():
|
||||
def switch():
|
||||
req = request.json
|
||||
try:
|
||||
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
||||
if not tenant_id:
|
||||
return get_data_error_result(message="Tenant not found!")
|
||||
if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
|
||||
search.index_name(tenant_id)):
|
||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="Document not found!")
|
||||
if not docStoreConn.update({"id": req["chunk_ids"]}, {"available_int": int(req["available_int"])},
|
||||
search.index_name(doc.tenant_id), doc.kb_id):
|
||||
return get_data_error_result(message="Index updating failure")
|
||||
return get_json_result(data=True)
|
||||
except Exception as e:
|
||||
@ -191,12 +183,11 @@ def switch():
|
||||
def rm():
|
||||
req = request.json
|
||||
try:
|
||||
if not ELASTICSEARCH.deleteByQuery(
|
||||
Q("ids", values=req["chunk_ids"]), search.index_name(current_user.id)):
|
||||
return get_data_error_result(message="Index updating failure")
|
||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
||||
if not e:
|
||||
return get_data_error_result(message="Document not found!")
|
||||
if not docStoreConn.delete({"id": req["chunk_ids"]}, search.index_name(current_user.id), doc.kb_id):
|
||||
return get_data_error_result(message="Index updating failure")
|
||||
deleted_chunk_ids = req["chunk_ids"]
|
||||
chunk_number = len(deleted_chunk_ids)
|
||||
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
|
||||
@ -239,7 +230,7 @@ def create():
|
||||
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
|
||||
v = 0.1 * v[0] + 0.9 * v[1]
|
||||
d["q_%d_vec" % len(v)] = v.tolist()
|
||||
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
|
||||
docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
|
||||
|
||||
DocumentService.increment_chunk_num(
|
||||
doc.id, doc.kb_id, c, 1, 0)
|
||||
@ -256,8 +247,9 @@ def retrieval_test():
|
||||
page = int(req.get("page", 1))
|
||||
size = int(req.get("size", 30))
|
||||
question = req["question"]
|
||||
kb_id = req["kb_id"]
|
||||
if isinstance(kb_id, str): kb_id = [kb_id]
|
||||
kb_ids = req["kb_id"]
|
||||
if isinstance(kb_ids, str):
|
||||
kb_ids = [kb_ids]
|
||||
doc_ids = req.get("doc_ids", [])
|
||||
similarity_threshold = float(req.get("similarity_threshold", 0.0))
|
||||
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
||||
@ -265,17 +257,17 @@ def retrieval_test():
|
||||
|
||||
try:
|
||||
tenants = UserTenantService.query(user_id=current_user.id)
|
||||
for kid in kb_id:
|
||||
for kb_id in kb_ids:
|
||||
for tenant in tenants:
|
||||
if KnowledgebaseService.query(
|
||||
tenant_id=tenant.tenant_id, id=kid):
|
||||
tenant_id=tenant.tenant_id, id=kb_id):
|
||||
break
|
||||
else:
|
||||
return get_json_result(
|
||||
data=False, message='Only owner of knowledgebase authorized for this operation.',
|
||||
code=RetCode.OPERATING_ERROR)
|
||||
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_id[0])
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
||||
if not e:
|
||||
return get_data_error_result(message="Knowledgebase not found!")
|
||||
|
||||
@ -290,7 +282,7 @@ def retrieval_test():
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
|
||||
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_id, page, size,
|
||||
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, page, size,
|
||||
similarity_threshold, vector_similarity_weight, top,
|
||||
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"))
|
||||
for c in ranks["chunks"]:
|
||||
@ -309,12 +301,16 @@ def retrieval_test():
|
||||
@login_required
|
||||
def knowledge_graph():
|
||||
doc_id = request.args["doc_id"]
|
||||
e, doc = DocumentService.get_by_id(doc_id)
|
||||
if not e:
|
||||
return get_data_error_result(message="Document not found!")
|
||||
tenant_id = DocumentService.get_tenant_id(doc_id)
|
||||
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
|
||||
req = {
|
||||
"doc_ids":[doc_id],
|
||||
"knowledge_graph_kwd": ["graph", "mind_map"]
|
||||
}
|
||||
tenant_id = DocumentService.get_tenant_id(doc_id)
|
||||
sres = retrievaler.search(req, search.index_name(tenant_id))
|
||||
sres = retrievaler.search(req, search.index_name(tenant_id), kb_ids, doc.kb_id)
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
for id in sres.ids[:2]:
|
||||
ty = sres.field[id]["knowledge_graph_kwd"]
|
||||
|
||||
Reference in New Issue
Block a user