mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
add local llm implementation (#119)
This commit is contained in:
90
rag/llm/rpc_server.py
Normal file
90
rag/llm/rpc_server.py
Normal file
@ -0,0 +1,90 @@
|
||||
import argparse
|
||||
import pickle
|
||||
import random
|
||||
import time
|
||||
from multiprocessing.connection import Listener
|
||||
from threading import Thread
|
||||
import torch
|
||||
|
||||
|
||||
class RPCHandler:
|
||||
def __init__(self):
|
||||
self._functions = { }
|
||||
|
||||
def register_function(self, func):
|
||||
self._functions[func.__name__] = func
|
||||
|
||||
def handle_connection(self, connection):
|
||||
try:
|
||||
while True:
|
||||
# Receive a message
|
||||
func_name, args, kwargs = pickle.loads(connection.recv())
|
||||
# Run the RPC and send a response
|
||||
try:
|
||||
r = self._functions[func_name](*args,**kwargs)
|
||||
connection.send(pickle.dumps(r))
|
||||
except Exception as e:
|
||||
connection.send(pickle.dumps(e))
|
||||
except EOFError:
|
||||
pass
|
||||
|
||||
|
||||
def rpc_server(hdlr, address, authkey):
|
||||
sock = Listener(address, authkey=authkey)
|
||||
while True:
|
||||
try:
|
||||
client = sock.accept()
|
||||
t = Thread(target=hdlr.handle_connection, args=(client,))
|
||||
t.daemon = True
|
||||
t.start()
|
||||
except Exception as e:
|
||||
print("【EXCEPTION】:", str(e))
|
||||
|
||||
|
||||
models = []
|
||||
tokenizer = None
|
||||
|
||||
def chat(messages, gen_conf):
|
||||
global tokenizer
|
||||
model = Model()
|
||||
roles = {"system":"System", "user": "User", "assistant": "Assistant"}
|
||||
line = ["{}: {}".format(roles[m["role"].lower()], m["content"]) for m in messages]
|
||||
line = "\n".join(line) + "\nAssistant: "
|
||||
tokens = tokenizer([line], return_tensors='pt')
|
||||
tokens = {k: tokens[k].to(model.device) if isinstance(tokens[k], torch.Tensor) else tokens[k] for k in
|
||||
tokens.keys()}
|
||||
res = [tokenizer.decode(t) for t in model.generate(**tokens, **gen_conf)][0]
|
||||
return res.split("Assistant: ")[-1]
|
||||
|
||||
|
||||
def Model():
|
||||
global models
|
||||
random.seed(time.time())
|
||||
return random.choice(models)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model_name", type=str, help="Model name")
|
||||
parser.add_argument("--port", default=7860, type=int, help="RPC serving port")
|
||||
args = parser.parse_args()
|
||||
|
||||
handler = RPCHandler()
|
||||
handler.register_function(chat)
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.generation.utils import GenerationConfig
|
||||
|
||||
models = []
|
||||
for _ in range(2):
|
||||
m = AutoModelForCausalLM.from_pretrained(args.model_name,
|
||||
device_map="auto",
|
||||
torch_dtype='auto',
|
||||
trust_remote_code=True)
|
||||
m.generation_config = GenerationConfig.from_pretrained(args.model_name)
|
||||
m.generation_config.pad_token_id = m.generation_config.eos_token_id
|
||||
models.append(m)
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.model_name, use_fast=False,
|
||||
trust_remote_code=True)
|
||||
|
||||
# Run the server
|
||||
rpc_server(handler, ('0.0.0.0', args.port), authkey=b'infiniflow-token4kevinhu')
|
||||
Reference in New Issue
Block a user