Feat: add meta filter to search app. (#9554)

### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Kevin Hu
2025-08-19 17:25:44 +08:00
committed by GitHub
parent a41a646909
commit f123587538
8 changed files with 94 additions and 154 deletions

View File

@ -17,24 +17,18 @@ import json
import re
import traceback
from copy import deepcopy
import trio
from flask import Response, request
from flask_login import current_user, login_required
from api import settings
from api.db import LLMType
from api.db.db_models import APIToken
from api.db.services.conversation_service import ConversationService, structure_answer
from api.db.services.dialog_service import DialogService, ask, chat
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.dialog_service import DialogService, ask, chat, gen_mindmap
from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.tag import label_question
from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import chunks_format
@ -375,71 +369,12 @@ def ask_about():
@validate_request("question", "kb_ids")
def mindmap():
req = request.json
search_id = req.get("search_id", "")
search_app = None
search_config = {}
if search_id:
search_app = SearchService.get_detail(search_id)
if search_app:
search_config = search_app.get("search_config", {})
search_app = SearchService.get_detail(search_id) if search_id else {}
search_config = search_app.get("search_config", {}) if search_app else {}
kb_ids = search_config.get("kb_ids", req["kb_ids"])
kb_ids = req["kb_ids"]
if search_config.get("kb_ids", []):
kb_ids = search_config.get("kb_ids", [])
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_data_error_result(message="Knowledgebase not found!")
chat_id = ""
similarity_threshold = 0.3,
vector_similarity_weight = 0.3,
top = 1024,
doc_ids = []
rerank_id = ""
rerank_mdl = None
if search_config:
if search_config.get("chat_id", ""):
chat_id = search_config.get("chat_id", "")
if search_config.get("similarity_threshold", 0.2):
similarity_threshold = search_config.get("similarity_threshold", 0.2)
if search_config.get("vector_similarity_weight", 0.3):
vector_similarity_weight = search_config.get("vector_similarity_weight", 0.3)
if search_config.get("top_k", 1024):
top = search_config.get("top_k", 1024)
if search_config.get("doc_ids", []):
doc_ids = search_config.get("doc_ids", [])
if search_config.get("rerank_id", ""):
rerank_id = search_config.get("rerank_id", "")
tenant_id = kb.tenant_id
if search_app and search_app.get("tenant_id", ""):
tenant_id = search_app.get("tenant_id", "")
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=chat_id)
if rerank_id:
rerank_mdl = LLMBundle(tenant_id, LLMType.RERANK, rerank_id)
question = req["question"]
ranks = settings.retrievaler.retrieval(
question=question,
embd_mdl=embd_mdl,
tenant_ids=tenant_id,
kb_ids=kb_ids,
page=1,
page_size=12,
similarity_threshold=similarity_threshold,
vector_similarity_weight=vector_similarity_weight,
top=top,
doc_ids=doc_ids,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(question, [kb]),
)
mindmap = MindMapExtractor(chat_mdl)
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
mind_map = mind_map.output
mind_map = gen_mindmap(req["question"], kb_ids, search_app.get("tenant_id", current_user.id), search_config)
if "error" in mind_map:
return server_error_response(Exception(mind_map["error"]))
return get_json_result(data=mind_map)