mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-20 04:39:00 +08:00
Fix: 'AzureEmbed' object has no attribute 'total_token_count_from_response' (#11962)
### What problem does this PR solve? https://github.com/infiniflow/ragflow/issues/11956 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
@ -49,17 +49,6 @@ class Base(ABC):
|
||||
def encode_queries(self, text: str):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
|
||||
def total_token_count(self, resp):
|
||||
try:
|
||||
return resp.usage.total_tokens
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
return resp["usage"]["total_tokens"]
|
||||
except Exception:
|
||||
pass
|
||||
return 0
|
||||
|
||||
|
||||
class BuiltinEmbed(Base):
|
||||
_FACTORY_NAME = "Builtin"
|
||||
@ -127,7 +116,7 @@ class OpenAIEmbed(Base):
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name, encoding_format="float",extra_body={"drop_params": True})
|
||||
try:
|
||||
return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
|
||||
return np.array(res.data[0].embedding), total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
raise Exception(f"Error: {res}")
|
||||
@ -216,7 +205,7 @@ class QWenEmbed(Base):
|
||||
for e in resp["output"]["embeddings"]:
|
||||
embds[e["text_index"]] = e["embedding"]
|
||||
res.extend(embds)
|
||||
token_count += self.total_token_count_from_response(resp)
|
||||
token_count += total_token_count_from_response(resp)
|
||||
except Exception as _e:
|
||||
log_exception(_e, resp)
|
||||
raise
|
||||
@ -225,7 +214,7 @@ class QWenEmbed(Base):
|
||||
def encode_queries(self, text):
|
||||
resp = dashscope.TextEmbedding.call(model=self.model_name, input=text[:2048], api_key=self.key, text_type="query")
|
||||
try:
|
||||
return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count_from_response(resp)
|
||||
return np.array(resp["output"]["embeddings"][0]["embedding"]), total_token_count_from_response(resp)
|
||||
except Exception as _e:
|
||||
log_exception(_e, resp)
|
||||
raise Exception(f"Error: {resp}")
|
||||
@ -253,7 +242,7 @@ class ZhipuEmbed(Base):
|
||||
res = self.client.embeddings.create(input=txt, model=self.model_name)
|
||||
try:
|
||||
arr.append(res.data[0].embedding)
|
||||
tks_num += self.total_token_count_from_response(res)
|
||||
tks_num += total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
raise Exception(f"Error: {res}")
|
||||
@ -262,7 +251,7 @@ class ZhipuEmbed(Base):
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(input=text, model=self.model_name)
|
||||
try:
|
||||
return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
|
||||
return np.array(res.data[0].embedding), total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
raise Exception(f"Error: {res}")
|
||||
@ -323,7 +312,7 @@ class XinferenceEmbed(Base):
|
||||
try:
|
||||
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
|
||||
ress.extend([d.embedding for d in res.data])
|
||||
total_tokens += self.total_token_count_from_response(res)
|
||||
total_tokens += total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
raise Exception(f"Error: {res}")
|
||||
@ -333,7 +322,7 @@ class XinferenceEmbed(Base):
|
||||
res = None
|
||||
try:
|
||||
res = self.client.embeddings.create(input=[text], model=self.model_name)
|
||||
return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
|
||||
return np.array(res.data[0].embedding), total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
raise Exception(f"Error: {res}")
|
||||
@ -409,7 +398,7 @@ class JinaMultiVecEmbed(Base):
|
||||
|
||||
ress.append(chunk_emb)
|
||||
|
||||
token_count += self.total_token_count_from_response(res)
|
||||
token_count +=total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, response)
|
||||
raise Exception(f"Error: {response}")
|
||||
@ -443,7 +432,7 @@ class MistralEmbed(Base):
|
||||
try:
|
||||
res = self.client.embeddings(input=texts[i : i + batch_size], model=self.model_name)
|
||||
ress.extend([d.embedding for d in res.data])
|
||||
token_count += self.total_token_count_from_response(res)
|
||||
token_count += total_token_count_from_response(res)
|
||||
break
|
||||
except Exception as _e:
|
||||
if retry_max == 1:
|
||||
@ -460,7 +449,7 @@ class MistralEmbed(Base):
|
||||
while retry_max > 0:
|
||||
try:
|
||||
res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name)
|
||||
return np.array(res.data[0].embedding), self.total_token_count_from_response(res)
|
||||
return np.array(res.data[0].embedding), total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
if retry_max == 1:
|
||||
log_exception(_e)
|
||||
@ -595,7 +584,7 @@ class NvidiaEmbed(Base):
|
||||
try:
|
||||
res = response.json()
|
||||
ress.extend([d["embedding"] for d in res["data"]])
|
||||
token_count += self.total_token_count_from_response(res)
|
||||
token_count += total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, response)
|
||||
raise Exception(f"Error: {response}")
|
||||
@ -732,7 +721,7 @@ class SILICONFLOWEmbed(Base):
|
||||
try:
|
||||
res = response.json()
|
||||
ress.extend([d["embedding"] for d in res["data"]])
|
||||
token_count += self.total_token_count_from_response(res)
|
||||
token_count += total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, response)
|
||||
raise Exception(f"Error: {response}")
|
||||
@ -748,7 +737,7 @@ class SILICONFLOWEmbed(Base):
|
||||
response = requests.post(self.base_url, json=payload, headers=self.headers)
|
||||
try:
|
||||
res = response.json()
|
||||
return np.array(res["data"][0]["embedding"]), self.total_token_count_from_response(res)
|
||||
return np.array(res["data"][0]["embedding"]), total_token_count_from_response(res)
|
||||
except Exception as _e:
|
||||
log_exception(_e, response)
|
||||
raise Exception(f"Error: {response}")
|
||||
@ -794,7 +783,7 @@ class BaiduYiyanEmbed(Base):
|
||||
try:
|
||||
return (
|
||||
np.array([r["embedding"] for r in res["data"]]),
|
||||
self.total_token_count_from_response(res),
|
||||
total_token_count_from_response(res),
|
||||
)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
@ -805,7 +794,7 @@ class BaiduYiyanEmbed(Base):
|
||||
try:
|
||||
return (
|
||||
np.array([r["embedding"] for r in res["data"]]),
|
||||
self.total_token_count_from_response(res),
|
||||
total_token_count_from_response(res),
|
||||
)
|
||||
except Exception as _e:
|
||||
log_exception(_e, res)
|
||||
|
||||
Reference in New Issue
Block a user