From e8fe580d7a73859ec4b2f23fe4d3c2800767da66 Mon Sep 17 00:00:00 2001 From: Yongteng Lei Date: Wed, 19 Nov 2025 13:17:22 +0800 Subject: [PATCH] Feat: add Gemini 3 Pro preview (#11361) ### What problem does this PR solve? Add Gemini 3 Pro preview. Change `GenerativeModel` to `genai`. ### Type of change - [x] New Feature (non-breaking change which adds functionality) --- conf/llm_factories.json | 9 +- rag/llm/cv_model.py | 381 ++++++++++++++++++++-------------------- 2 files changed, 199 insertions(+), 191 deletions(-) diff --git a/conf/llm_factories.json b/conf/llm_factories.json index 3e70e0243..0eefa7a14 100644 --- a/conf/llm_factories.json +++ b/conf/llm_factories.json @@ -1429,6 +1429,13 @@ "status": "1", "rank": "980", "llm": [ + { + "llm_name": "gemini-3-pro-preview", + "tags": "LLM,CHAT,1M,IMAGE2TEXT", + "max_tokens": 1048576, + "model_type": "image2text", + "is_tools": true + }, { "llm_name": "gemini-2.5-flash", "tags": "LLM,CHAT,1024K,IMAGE2TEXT", @@ -5474,4 +5481,4 @@ ] } ] -} \ No newline at end of file +} diff --git a/rag/llm/cv_model.py b/rag/llm/cv_model.py index 15c8943d8..7d2e7f228 100644 --- a/rag/llm/cv_model.py +++ b/rag/llm/cv_model.py @@ -14,24 +14,27 @@ # limitations under the License. # -import re import base64 import json -import os -import tempfile import logging +import os +import re +import tempfile from abc import ABC from copy import deepcopy from io import BytesIO from pathlib import Path from urllib.parse import urljoin + import requests from openai import OpenAI from openai.lib.azure import AzureOpenAI from zhipuai import ZhipuAI + +from common.token_utils import num_tokens_from_string, total_token_count_from_response from rag.nlp import is_english from rag.prompts.generator import vision_llm_describe_prompt -from common.token_utils import num_tokens_from_string, total_token_count_from_response + class Base(ABC): def __init__(self, **kwargs): @@ -70,12 +73,7 @@ class Base(ABC): pmpt = [{"type": "text", "text": text}] for img in images: - pmpt.append({ - "type": "image_url", - "image_url": { - "url": img if isinstance(img, str) and img.startswith("data:") else f"data:image/png;base64,{img}" - } - }) + pmpt.append({"type": "image_url", "image_url": {"url": img if isinstance(img, str) and img.startswith("data:") else f"data:image/png;base64,{img}"}}) return pmpt def chat(self, system, history, gen_conf, images=None, **kwargs): @@ -128,7 +126,7 @@ class Base(ABC): try: image.save(buffered, format="JPEG") except Exception: - # reset buffer before saving PNG + # reset buffer before saving PNG buffered.seek(0) buffered.truncate() image.save(buffered, format="PNG") @@ -158,7 +156,7 @@ class Base(ABC): try: image.save(buffered, format="JPEG") except Exception: - # reset buffer before saving PNG + # reset buffer before saving PNG buffered.seek(0) buffered.truncate() image.save(buffered, format="PNG") @@ -176,18 +174,13 @@ class Base(ABC): "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.", - b64 - ) + b64, + ), } ] def vision_llm_prompt(self, b64, prompt=None): - return [ - { - "role": "user", - "content": self._image_prompt(prompt if prompt else vision_llm_describe_prompt(), b64) - } - ] + return [{"role": "user", "content": self._image_prompt(prompt if prompt else vision_llm_describe_prompt(), b64)}] class GptV4(Base): @@ -208,7 +201,7 @@ class GptV4(Base): model=self.model_name, messages=self.prompt(b64), extra_body=self.extra_body, - unused = None, + unused=None, ) return res.choices[0].message.content.strip(), total_token_count_from_response(res) @@ -219,7 +212,7 @@ class GptV4(Base): messages=self.vision_llm_prompt(b64, prompt), extra_body=self.extra_body, ) - return res.choices[0].message.content.strip(),total_token_count_from_response(res) + return res.choices[0].message.content.strip(), total_token_count_from_response(res) class AzureGptV4(GptV4): @@ -324,14 +317,12 @@ class Zhipu4V(GptV4): self.lang = lang Base.__init__(self, **kwargs) - def _clean_conf(self, gen_conf): if "max_tokens" in gen_conf: del gen_conf["max_tokens"] gen_conf = self._clean_conf_plealty(gen_conf) return gen_conf - def _clean_conf_plealty(self, gen_conf): if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"] @@ -339,24 +330,17 @@ class Zhipu4V(GptV4): del gen_conf["frequency_penalty"] return gen_conf - def _request(self, msg, stream, gen_conf={}): response = requests.post( self.base_url, - json={ - "model": self.model_name, - "messages": msg, - "stream": stream, - **gen_conf + json={"model": self.model_name, "messages": msg, "stream": stream, **gen_conf}, + headers={ + "Authorization": f"Bearer {self.api_key}", + "Content-Type": "application/json", }, - headers= { - "Authorization": f"Bearer {self.api_key}", - "Content-Type": "application/json", - } ) return response.json() - def chat(self, system, history, gen_conf, images=None, stream=False, **kwargs): if system and history and history[0].get("role") != "system": history.insert(0, {"role": "system", "content": system}) @@ -369,10 +353,9 @@ class Zhipu4V(GptV4): cleaned = re.sub(r"<\|(begin_of_box|end_of_box)\|>", "", content).strip() return cleaned, total_token_count_from_response(response) - def chat_streamly(self, system, history, gen_conf, images=None, **kwargs): - from rag.llm.chat_model import LENGTH_NOTIFICATION_CN, LENGTH_NOTIFICATION_EN + from rag.llm.chat_model import LENGTH_NOTIFICATION_CN, LENGTH_NOTIFICATION_EN from rag.nlp import is_chinese if system and history and history[0].get("role") != "system": @@ -402,44 +385,24 @@ class Zhipu4V(GptV4): yield tk_count - def describe(self, image): return self.describe_with_prompt(image) - def describe_with_prompt(self, image, prompt=None): b64 = self.image2base64(image) if prompt is None: prompt = "Describe this image." # Chat messages - messages = [ - { - "role": "user", - "content": [ - { - "type": "image_url", - "image_url": { "url": b64 } - }, - { - "type": "text", - "text": prompt - } - ] - } - ] + messages = [{"role": "user", "content": [{"type": "image_url", "image_url": {"url": b64}}, {"type": "text", "text": prompt}]}] - resp = self.client.chat.completions.create( - model=self.model_name, - messages=messages, - stream=False - ) + resp = self.client.chat.completions.create(model=self.model_name, messages=messages, stream=False) content = resp.choices[0].message.content.strip() cleaned = re.sub(r"<\|(begin_of_box|end_of_box)\|>", "", content).strip() return cleaned, num_tokens_from_string(cleaned) - + class StepFunCV(GptV4): _FACTORY_NAME = "StepFun" @@ -452,6 +415,7 @@ class StepFunCV(GptV4): self.lang = lang Base.__init__(self, **kwargs) + class VolcEngineCV(GptV4): _FACTORY_NAME = "VolcEngine" @@ -464,6 +428,7 @@ class VolcEngineCV(GptV4): self.lang = lang Base.__init__(self, **kwargs) + class LmStudioCV(GptV4): _FACTORY_NAME = "LM-Studio" @@ -502,13 +467,7 @@ class TogetherAICV(GptV4): class YiCV(GptV4): _FACTORY_NAME = "01.AI" - def __init__( - self, - key, - model_name, - lang="Chinese", - base_url="https://api.lingyiwanwu.com/v1", **kwargs - ): + def __init__(self, key, model_name, lang="Chinese", base_url="https://api.lingyiwanwu.com/v1", **kwargs): if not base_url: base_url = "https://api.lingyiwanwu.com/v1" super().__init__(key, model_name, lang, base_url, **kwargs) @@ -517,13 +476,7 @@ class YiCV(GptV4): class SILICONFLOWCV(GptV4): _FACTORY_NAME = "SILICONFLOW" - def __init__( - self, - key, - model_name, - lang="Chinese", - base_url="https://api.siliconflow.cn/v1", **kwargs - ): + def __init__(self, key, model_name, lang="Chinese", base_url="https://api.siliconflow.cn/v1", **kwargs): if not base_url: base_url = "https://api.siliconflow.cn/v1" super().__init__(key, model_name, lang, base_url, **kwargs) @@ -532,13 +485,7 @@ class SILICONFLOWCV(GptV4): class OpenRouterCV(GptV4): _FACTORY_NAME = "OpenRouter" - def __init__( - self, - key, - model_name, - lang="Chinese", - base_url="https://openrouter.ai/api/v1", **kwargs - ): + def __init__(self, key, model_name, lang="Chinese", base_url="https://openrouter.ai/api/v1", **kwargs): if not base_url: base_url = "https://openrouter.ai/api/v1" api_key = json.loads(key).get("api_key", "") @@ -549,6 +496,7 @@ class OpenRouterCV(GptV4): provider_order = json.loads(key).get("provider_order", "") self.extra_body = {} if provider_order: + def _to_order_list(x): if x is None: return [] @@ -557,6 +505,7 @@ class OpenRouterCV(GptV4): if isinstance(x, (list, tuple)): return [str(s).strip() for s in x if str(s).strip()] return [] + provider_cfg = {} provider_order = _to_order_list(provider_order) provider_cfg["order"] = provider_order @@ -616,18 +565,18 @@ class OllamaCV(Base): def __init__(self, key, model_name, lang="Chinese", **kwargs): from ollama import Client + self.client = Client(host=kwargs["base_url"]) self.model_name = model_name self.lang = lang self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1))) Base.__init__(self, **kwargs) - def _clean_img(self, img): if not isinstance(img, str): return img - #remove the header like "data/*;base64," + # remove the header like "data/*;base64," if img.startswith("data:") and ";base64," in img: img = img.split(";base64,")[1] return img @@ -687,12 +636,7 @@ class OllamaCV(Base): def chat(self, system, history, gen_conf, images=None, **kwargs): try: - response = self.client.chat( - model=self.model_name, - messages=self._form_history(system, history, images), - options=self._clean_conf(gen_conf), - keep_alive=self.keep_alive - ) + response = self.client.chat(model=self.model_name, messages=self._form_history(system, history, images), options=self._clean_conf(gen_conf), keep_alive=self.keep_alive) ans = response["message"]["content"].strip() return ans, response["eval_count"] + response.get("prompt_eval_count", 0) @@ -702,13 +646,7 @@ class OllamaCV(Base): def chat_streamly(self, system, history, gen_conf, images=None, **kwargs): ans = "" try: - response = self.client.chat( - model=self.model_name, - messages=self._form_history(system, history, images), - stream=True, - options=self._clean_conf(gen_conf), - keep_alive=self.keep_alive - ) + response = self.client.chat(model=self.model_name, messages=self._form_history(system, history, images), stream=True, options=self._clean_conf(gen_conf), keep_alive=self.keep_alive) for resp in response: if resp["done"]: yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0) @@ -723,29 +661,80 @@ class GeminiCV(Base): _FACTORY_NAME = "Gemini" def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs): - from google.generativeai import GenerativeModel, client + from google import genai - client.configure(api_key=key) - _client = client.get_default_generative_client() - self.api_key=key + self.api_key = key self.model_name = model_name - self.model = GenerativeModel(model_name=self.model_name) - self.model._client = _client + self.client = genai.Client(api_key=key) self.lang = lang Base.__init__(self, **kwargs) + logging.info(f"[GeminiCV] Initialized with model={self.model_name} lang={self.lang}") + + def _image_to_part(self, image): + from google.genai import types + + if isinstance(image, str) and image.startswith("data:") and ";base64," in image: + header, b64data = image.split(",", 1) + mime = header.split(":", 1)[1].split(";", 1)[0] + data = base64.b64decode(b64data) + else: + data_url = self.image2base64(image) + header, b64data = data_url.split(",", 1) + mime = header.split(":", 1)[1].split(";", 1)[0] + data = base64.b64decode(b64data) + + return types.Part( + inline_data=types.Blob( + mime_type=mime, + data=data, + ) + ) def _form_history(self, system, history, images=None): - hist = [] - if system: - hist.append({"role": "user", "parts": [system, history[0]["content"]]}) + from google.genai import types + + contents = [] + images = images or [] + system_len = len(system) if isinstance(system, str) else 0 + history_len = len(history) if history else 0 + images_len = len(images) + logging.info(f"[GeminiCV] _form_history called: system_len={system_len} history_len={history_len} images_len={images_len}") + + image_parts = [] for img in images: - hist[0]["parts"].append(("data:image/jpeg;base64," + img) if img[:4]!="data" else img) - for h in history[1:]: - hist.append({"role": "user" if h["role"]=="user" else "model", "parts": [h["content"]]}) - return hist + try: + image_parts.append(self._image_to_part(img)) + except Exception: + continue + + remaining_history = history or [] + if system or remaining_history: + parts = [] + if system: + parts.append(types.Part(text=system)) + if remaining_history: + first = remaining_history[0] + parts.append(types.Part(text=first.get("content", ""))) + remaining_history = remaining_history[1:] + parts.extend(image_parts) + contents.append(types.Content(role="user", parts=parts)) + elif image_parts: + contents.append(types.Content(role="user", parts=image_parts)) + + role_map = {"user": "user", "assistant": "model", "system": "user"} + for h in remaining_history: + role = role_map.get(h.get("role"), "user") + contents.append( + types.Content( + role=role, + parts=[types.Part(text=h.get("content", ""))], + ) + ) + + return contents def describe(self, image): - from PIL.Image import open + from google.genai import types prompt = ( "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" @@ -753,74 +742,104 @@ class GeminiCV(Base): else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out." ) - if image is bytes: - with BytesIO(image) as bio: - with open(bio) as img: - input = [prompt, img] - res = self.model.generate_content(input) - return res.text, total_token_count_from_response(res) - else: - b64 = self.image2base64_rawvalue(image) - with BytesIO(base64.b64decode(b64)) as bio: - with open(bio) as img: - input = [prompt, img] - res = self.model.generate_content(input) - return res.text, total_token_count_from_response(res) + contents = [ + types.Content( + role="user", + parts=[ + types.Part(text=prompt), + self._image_to_part(image), + ], + ) + ] + + res = self.client.models.generate_content( + model=self.model_name, + contents=contents, + ) + return res.text, total_token_count_from_response(res) def describe_with_prompt(self, image, prompt=None): - from PIL.Image import open + from google.genai import types + vision_prompt = prompt if prompt else vision_llm_describe_prompt() - if image is bytes: - with BytesIO(image) as bio: - with open(bio) as img: - input = [vision_prompt, img] - res = self.model.generate_content(input) - return res.text, total_token_count_from_response(res) - else: - b64 = self.image2base64_rawvalue(image) - with BytesIO(base64.b64decode(b64)) as bio: - with open(bio) as img: - input = [vision_prompt, img] - res = self.model.generate_content(input) - return res.text, total_token_count_from_response(res) + contents = [ + types.Content( + role="user", + parts=[ + types.Part(text=vision_prompt), + self._image_to_part(image), + ], + ) + ] + res = self.client.models.generate_content( + model=self.model_name, + contents=contents, + ) + return res.text, total_token_count_from_response(res) def chat(self, system, history, gen_conf, images=None, video_bytes=None, filename="", **kwargs): if video_bytes: try: + size = len(video_bytes) if video_bytes else 0 + logging.info(f"[GeminiCV] chat called with video: filename={filename} size={size}") summary, summary_num_tokens = self._process_video(video_bytes, filename) return summary, summary_num_tokens except Exception as e: + logging.info(f"[GeminiCV] chat video error: {e}") return "**ERROR**: " + str(e), 0 - generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)) + from google.genai import types + + history_len = len(history) if history else 0 + images_len = len(images) if images else 0 + logging.info(f"[GeminiCV] chat called: history_len={history_len} images_len={images_len} gen_conf={gen_conf}") + + generation_config = types.GenerateContentConfig( + temperature=gen_conf.get("temperature", 0.3), + top_p=gen_conf.get("top_p", 0.7), + ) try: - response = self.model.generate_content( - self._form_history(system, history, images), - generation_config=generation_config) + response = self.client.models.generate_content( + model=self.model_name, + contents=self._form_history(system, history, images), + config=generation_config, + ) ans = response.text - return ans, total_token_count_from_response(ans) + logging.info("[GeminiCV] chat completed") + return ans, total_token_count_from_response(response) except Exception as e: + logging.warning(f"[GeminiCV] chat error: {e}") return "**ERROR**: " + str(e), 0 def chat_streamly(self, system, history, gen_conf, images=None, **kwargs): ans = "" response = None try: - generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)) - response = self.model.generate_content( - self._form_history(system, history, images), - generation_config=generation_config, - stream=True, + from google.genai import types + + generation_config = types.GenerateContentConfig( + temperature=gen_conf.get("temperature", 0.3), + top_p=gen_conf.get("top_p", 0.7), + ) + history_len = len(history) if history else 0 + images_len = len(images) if images else 0 + logging.info(f"[GeminiCV] chat_streamly called: history_len={history_len} images_len={images_len} gen_conf={gen_conf}") + + response_stream = self.client.models.generate_content_stream( + model=self.model_name, + contents=self._form_history(system, history, images), + config=generation_config, ) - for resp in response: - if not resp.text: - continue - ans = resp.text - yield ans + for chunk in response_stream: + if chunk.text: + ans += chunk.text + yield chunk.text + logging.info("[GeminiCV] chat_streamly completed") except Exception as e: + logging.warning(f"[GeminiCV] chat_streamly error: {e}") yield ans + "\n**ERROR**: " + str(e) yield total_token_count_from_response(response) @@ -830,17 +849,15 @@ class GeminiCV(Base): from google.genai import types video_size_mb = len(video_bytes) / (1024 * 1024) - client = genai.Client(api_key=self.api_key) + client = self.client if hasattr(self, "client") else genai.Client(api_key=self.api_key) + logging.info(f"[GeminiCV] _process_video called: filename={filename} size_mb={video_size_mb:.2f}") tmp_path = None try: if video_size_mb <= 20: response = client.models.generate_content( model="models/gemini-2.5-flash", - contents=types.Content(parts=[ - types.Part(inline_data=types.Blob(data=video_bytes, mime_type="video/mp4")), - types.Part(text="Please summarize the video in proper sentences.") - ]) + contents=types.Content(parts=[types.Part(inline_data=types.Blob(data=video_bytes, mime_type="video/mp4")), types.Part(text="Please summarize the video in proper sentences.")]), ) else: logging.info(f"Video size {video_size_mb:.2f}MB exceeds 20MB. Using Files API...") @@ -850,16 +867,13 @@ class GeminiCV(Base): tmp_path = Path(tmp.name) uploaded_file = client.files.upload(file=tmp_path) - response = client.models.generate_content( - model="gemini-2.5-flash", - contents=[uploaded_file, "Please summarize this video in proper sentences."] - ) + response = client.models.generate_content(model="gemini-2.5-flash", contents=[uploaded_file, "Please summarize this video in proper sentences."]) summary = response.text or "" - logging.info(f"Video summarized: {summary[:32]}...") + logging.info(f"[GeminiCV] Video summarized: {summary[:32]}...") return summary, num_tokens_from_string(summary) except Exception as e: - logging.error(f"Video processing failed: {e}") + logging.warning(f"[GeminiCV] Video processing failed: {e}") raise finally: if tmp_path and tmp_path.exists(): @@ -869,13 +883,7 @@ class GeminiCV(Base): class NvidiaCV(Base): _FACTORY_NAME = "NVIDIA" - def __init__( - self, - key, - model_name, - lang="Chinese", - base_url="https://ai.api.nvidia.com/v1/vlm", **kwargs - ): + def __init__(self, key, model_name, lang="Chinese", base_url="https://ai.api.nvidia.com/v1/vlm", **kwargs): if not base_url: base_url = ("https://ai.api.nvidia.com/v1/vlm",) self.lang = lang @@ -920,9 +928,7 @@ class NvidiaCV(Base): "content-type": "application/json", "Authorization": f"Bearer {self.key}", }, - json={ - "messages": msg, **gen_conf - }, + json={"messages": msg, **gen_conf}, ) return response.json() @@ -930,18 +936,12 @@ class NvidiaCV(Base): b64 = self.image2base64(image) vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64) response = self._request(vision_prompt) - return ( - response["choices"][0]["message"]["content"].strip(), - total_token_count_from_response(response) - ) + return (response["choices"][0]["message"]["content"].strip(), total_token_count_from_response(response)) def chat(self, system, history, gen_conf, images=None, **kwargs): try: response = self._request(self._form_history(system, history, images), gen_conf) - return ( - response["choices"][0]["message"]["content"].strip(), - total_token_count_from_response(response) - ) + return (response["choices"][0]["message"]["content"].strip(), total_token_count_from_response(response)) except Exception as e: return "**ERROR**: " + str(e), 0 @@ -950,7 +950,7 @@ class NvidiaCV(Base): try: response = self._request(self._form_history(system, history, images), gen_conf) cnt = response["choices"][0]["message"]["content"] - total_tokens += total_token_count_from_response(response) + total_tokens += total_token_count_from_response(response) for resp in cnt: yield resp except Exception as e: @@ -978,14 +978,15 @@ class AnthropicCV(Base): return text pmpt = [{"type": "text", "text": text}] for img in images: - pmpt.append({ - "type": "image", - "source": { - "type": "base64", - "media_type": (img.split(":")[1].split(";")[0] if isinstance(img, str) and img[:4] == "data" else "image/png"), - "data": (img.split(",")[1] if isinstance(img, str) and img[:4] == "data" else img) - }, - } + pmpt.append( + { + "type": "image", + "source": { + "type": "base64", + "media_type": (img.split(":")[1].split(";")[0] if isinstance(img, str) and img[:4] == "data" else "image/png"), + "data": (img.split(",")[1] if isinstance(img, str) and img[:4] == "data" else img), + }, + } ) return pmpt