Update Octoverse to README (#10859)

### Type of change

- [x] Documentation Update
This commit is contained in:
Yingfeng
2025-10-29 00:34:39 +08:00
committed by GitHub
parent 2c0035dcea
commit e86bd723d1
7 changed files with 175 additions and 178 deletions

View File

@ -43,7 +43,9 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
@ -175,13 +177,12 @@ releases! 🌟
> ```bash
> vm.max_map_count=262144
> ```
>
2. Clone the repo:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Start up the server using the pre-built Docker images:
> [!CAUTION]
@ -201,12 +202,11 @@ releases! 🌟
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
| ----------------- | --------------- | --------------------- | -------------------------- |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;2 | ❌ | _Unstable_ nightly build |
> Note: Starting with `v0.22.0`, we ship only the slim edition and no longer append the **-slim** suffix to the image tag.
4. Check the server status after having the server up and running:
@ -230,14 +230,17 @@ releases! 🌟
> If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anormal`
> error because, at that moment, your RAGFlow may not be fully initialized.
>
5. In your web browser, enter the IP address of your server and log in to RAGFlow.
> With the default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default
> HTTP serving port `80` can be omitted when using the default configurations.
>
6. In [service_conf.yaml.template](./docker/service_conf.yaml.template), select the desired LLM factory in `user_default_llm` and update
the `API_KEY` field with the corresponding API key.
> See [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) for more information.
>
_The show is on!_
@ -276,7 +279,6 @@ RAGFlow uses Elasticsearch by default for storing full text and vectors. To swit
> `-v` will delete the docker container volumes, and the existing data will be cleared.
2. Set `DOC_ENGINE` in **docker/.env** to `infinity`.
3. Start the containers:
```bash
@ -303,7 +305,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
pipx install uv pre-commit
```
2. Clone the source code and install Python dependencies:
```bash
@ -313,7 +314,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
uv run download_deps.py
pre-commit install
```
3. Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:
```bash
@ -325,13 +325,11 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. If you cannot access HuggingFace, set the `HF_ENDPOINT` environment variable to use a mirror site:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. If your operating system does not have jemalloc, please install it as follows:
```bash
@ -344,7 +342,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
# macOS
sudo brew install jemalloc
```
6. Launch backend service:
```bash
@ -352,14 +349,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. Install frontend dependencies:
```bash
cd web
npm install
```
8. Launch frontend service:
```bash
@ -369,14 +364,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
_The following output confirms a successful launch of the system:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Stop RAGFlow front-end and back-end service after development is complete:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Documentation
- [Quickstart](https://ragflow.io/docs/dev/)

View File

@ -43,7 +43,13 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
<details open>
<summary><b>📕 Daftar Isi </b> </summary>
@ -169,13 +175,12 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> ```bash
> vm.max_map_count=262144
> ```
>
2. Clone repositori:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Bangun image Docker pre-built dan jalankan server:
> [!CAUTION]
@ -195,7 +200,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| ----------------- | --------------- | --------------------- | -------------------------- |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;2 | ❌ | _Unstable_ nightly build |
@ -223,14 +228,17 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Jika Anda melewatkan langkah ini dan langsung login ke RAGFlow, browser Anda mungkin menampilkan error `network anormal`
> karena RAGFlow mungkin belum sepenuhnya siap.
>
2. Buka browser web Anda, masukkan alamat IP server Anda, dan login ke RAGFlow.
> Dengan pengaturan default, Anda hanya perlu memasukkan `http://IP_DEVICE_ANDA` (**tanpa** nomor port) karena
> port HTTP default `80` bisa dihilangkan saat menggunakan konfigurasi default.
>
3. Dalam [service_conf.yaml.template](./docker/service_conf.yaml.template), pilih LLM factory yang diinginkan di `user_default_llm` dan perbarui
bidang `API_KEY` dengan kunci API yang sesuai.
> Lihat [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) untuk informasi lebih lanjut.
>
_Sistem telah siap digunakan!_
@ -269,7 +277,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
pipx install uv pre-commit
```
2. Clone kode sumber dan instal dependensi Python:
```bash
@ -279,7 +286,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
uv run download_deps.py
pre-commit install
```
3. Jalankan aplikasi yang diperlukan (MinIO, Elasticsearch, Redis, dan MySQL) menggunakan Docker Compose:
```bash
@ -291,13 +297,11 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. Jika Anda tidak dapat mengakses HuggingFace, atur variabel lingkungan `HF_ENDPOINT` untuk menggunakan situs mirror:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. Jika sistem operasi Anda tidak memiliki jemalloc, instal sebagai berikut:
```bash
@ -308,7 +312,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
# mac
sudo brew install jemalloc
```
6. Jalankan aplikasi backend:
```bash
@ -316,14 +319,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. Instal dependensi frontend:
```bash
cd web
npm install
```
8. Jalankan aplikasi frontend:
```bash
@ -333,15 +334,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
_Output berikut menandakan bahwa sistem berhasil diluncurkan:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Hentikan layanan front-end dan back-end RAGFlow setelah pengembangan selesai:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Dokumentasi
- [Quickstart](https://ragflow.io/docs/dev/)

View File

@ -43,7 +43,13 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
## 💡 RAGFlow とは?
@ -148,13 +154,12 @@
> ```bash
> vm.max_map_count=262144
> ```
>
2. リポジトリをクローンする:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. ビルド済みの Docker イメージをビルドし、サーバーを起動する:
> [!CAUTION]
@ -174,7 +179,7 @@
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| ----------------- | --------------- | --------------------- | -------------------------- |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;2 | ❌ | _Unstable_ nightly build |
@ -200,12 +205,15 @@
```
> もし確認ステップをスキップして直接 RAGFlow にログインした場合、その時点で RAGFlow が完全に初期化されていない可能性があるため、ブラウザーがネットワーク異常エラーを表示するかもしれません。
>
2. ウェブブラウザで、プロンプトに従ってサーバーの IP アドレスを入力し、RAGFlow にログインします。
> デフォルトの設定を使用する場合、デフォルトの HTTP サービングポート `80` は省略できるので、与えられたシナリオでは、`http://IP_OF_YOUR_MACHINE`(ポート番号は省略)だけを入力すればよい。
>
3. [service_conf.yaml.template](./docker/service_conf.yaml.template) で、`user_default_llm` で希望の LLM ファクトリを選択し、`API_KEY` フィールドを対応する API キーで更新する。
> 詳しくは [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) を参照してください。
>
_これで初期設定完了ショーの開幕です_
@ -234,18 +242,22 @@
RAGFlow はデフォルトで Elasticsearch を使用して全文とベクトルを保存します。Infinityに切り替えhttps://github.com/infiniflow/infinity/)、次の手順に従います。
1. 実行中のすべてのコンテナを停止するには:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` は docker コンテナのボリュームを削除し、既存のデータをクリアします。
2. **docker/.env** の「DOC \_ ENGINE」を「infinity」に設定します。
3. 起動コンテナ:
```bash
$ docker compose -f docker-compose.yml up -d
```
> [!WARNING]
> Linux/arm64 マシンでの Infinity への切り替えは正式にサポートされていません。
>
## 🔧 ソースコードで Docker イメージを作成(埋め込みモデルなし)
@ -264,7 +276,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
pipx install uv pre-commit
```
2. ソースコードをクローンし、Python の依存関係をインストールする:
```bash
@ -274,7 +285,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
uv run download_deps.py
pre-commit install
```
3. Docker Compose を使用して依存サービスMinIO、Elasticsearch、Redis、MySQLを起動する:
```bash
@ -286,13 +296,11 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. HuggingFace にアクセスできない場合は、`HF_ENDPOINT` 環境変数を設定してミラーサイトを使用してください:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. オペレーティングシステムにjemallocがない場合は、次のようにインストールします:
```bash
@ -303,7 +311,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
# mac
sudo brew install jemalloc
```
6. バックエンドサービスを起動する:
```bash
@ -311,14 +318,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. フロントエンドの依存関係をインストールする:
```bash
cd web
npm install
```
8. フロントエンドサービスを起動する:
```bash
@ -328,14 +333,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
_以下の画面で、システムが正常に起動したことを示します:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. 開発が完了したら、RAGFlow のフロントエンド サービスとバックエンド サービスを停止します:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 ドキュメンテーション
- [Quickstart](https://ragflow.io/docs/dev/)

View File

@ -43,7 +43,14 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
## 💡 RAGFlow란?

View File

@ -43,7 +43,13 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
<details open>
<summary><b>📕 Índice</b></summary>
@ -168,13 +174,12 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> ```bash
> vm.max_map_count=262144
> ```
>
2. Clone o repositório:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. Inicie o servidor usando as imagens Docker pré-compiladas:
> [!CAUTION]
@ -194,7 +199,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
```
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | --------------------------- |
| --------------------- | ---------------------- | --------------------------------- | ------------------------------ |
| v0.21.1 | &approx;9 | ✔️ | Lançamento estável |
| v0.21.1-slim | &approx;2 | ❌ | Lançamento estável |
| nightly | &approx;2 | ❌ | Construção noturna instável |
@ -220,14 +225,15 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
```
> Se você pular essa etapa de confirmação e acessar diretamente o RAGFlow, seu navegador pode exibir um erro `network anormal`, pois, nesse momento, seu RAGFlow pode não estar totalmente inicializado.
>
5. No seu navegador, insira o endereço IP do seu servidor e faça login no RAGFlow.
> Com as configurações padrão, você só precisa digitar `http://IP_DO_SEU_MÁQUINA` (**sem** o número da porta), pois a porta HTTP padrão `80` pode ser omitida ao usar as configurações padrão.
>
6. Em [service_conf.yaml.template](./docker/service_conf.yaml.template), selecione a fábrica LLM desejada em `user_default_llm` e atualize o campo `API_KEY` com a chave de API correspondente.
> Consulte [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) para mais informações.
>
_O show está no ar!_
@ -258,9 +264,9 @@ O RAGFlow usa o Elasticsearch por padrão para armazenar texto completo e vetore
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` irá deletar os volumes do contêiner, e os dados existentes serão apagados.
2. Defina `DOC_ENGINE` no **docker/.env** para `infinity`.
3. Inicie os contêineres:
```bash
@ -287,7 +293,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
pipx install uv pre-commit
```
2. Clone o código-fonte e instale as dependências Python:
```bash
@ -297,7 +302,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
uv run download_deps.py
pre-commit install
```
3. Inicie os serviços dependentes (MinIO, Elasticsearch, Redis e MySQL) usando Docker Compose:
```bash
@ -309,13 +313,11 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. Se não conseguir acessar o HuggingFace, defina a variável de ambiente `HF_ENDPOINT` para usar um site espelho:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. Se o seu sistema operacional não tiver jemalloc, instale-o da seguinte maneira:
```bash
@ -326,7 +328,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
# mac
sudo brew install jemalloc
```
6. Lance o serviço de back-end:
```bash
@ -334,14 +335,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. Instale as dependências do front-end:
```bash
cd web
npm install
```
8. Lance o serviço de front-end:
```bash
@ -351,14 +350,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
_O seguinte resultado confirma o lançamento bem-sucedido do sistema:_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
9. Pare os serviços de front-end e back-end do RAGFlow após a conclusão do desenvolvimento:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 Documentação
- [Quickstart](https://ragflow.io/docs/dev/)

View File

@ -43,7 +43,9 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
@ -171,13 +173,12 @@
> ```bash
> vm.max_map_count=262144
> ```
>
2. 克隆倉庫:
```bash
$ git clone https://github.com/infiniflow/ragflow.git
```
3. 進入 **docker** 資料夾,利用事先編譯好的 Docker 映像啟動伺服器:
> [!CAUTION]
@ -197,7 +198,7 @@
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| ----------------- | --------------- | --------------------- | -------------------------- |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;2 | ❌ | _Unstable_ nightly build |
@ -229,12 +230,15 @@
```
> 如果您跳過這一步驟系統確認步驟就登入 RAGFlow你的瀏覽器有可能會提示 `network anormal` 或 `網路異常`,因為 RAGFlow 可能並未完全啟動成功。
>
5. 在你的瀏覽器中輸入你的伺服器對應的 IP 位址並登入 RAGFlow。
> 上面這個範例中,您只需輸入 http://IP_OF_YOUR_MACHINE 即可:未改動過設定則無需輸入連接埠(預設的 HTTP 服務連接埠 80
>
6. 在 [service_conf.yaml.template](./docker/service_conf.yaml.template) 檔案的 `user_default_llm` 欄位設定 LLM factory並在 `API_KEY` 欄填入和你選擇的大模型相對應的 API key。
> 詳見 [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup)。
>
_好戲開始接著奏樂接著舞 _
@ -269,10 +273,9 @@ RAGFlow 預設使用 Elasticsearch 儲存文字和向量資料. 如果要切換
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
Note: `-v` 將會刪除 docker 容器的 volumes已有的資料會被清空。
2. 設定 **docker/.env** 目錄中的 `DOC_ENGINE` 為 `infinity`.
3. 啟動容器:
```bash
@ -300,7 +303,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
pipx install uv pre-commit
export UV_INDEX=https://mirrors.aliyun.com/pypi/simple
```
2. 下載原始碼並安裝 Python 依賴:
```bash
@ -310,7 +312,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
uv run download_deps.py
pre-commit install
```
3. 透過 Docker Compose 啟動依賴的服務MinIO, Elasticsearch, Redis, and MySQL
```bash
@ -322,13 +323,11 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
```
4. 如果無法存取 HuggingFace可以把環境變數 `HF_ENDPOINT` 設為對應的鏡像網站:
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
5. 如果你的操作系统没有 jemalloc请按照如下方式安装
```bash
@ -339,7 +338,6 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
# mac
sudo brew install jemalloc
```
6. 啟動後端服務:
```bash
@ -347,14 +345,12 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
export PYTHONPATH=$(pwd)
bash docker/launch_backend_service.sh
```
7. 安裝前端依賴:
```bash
cd web
npm install
```
8. 啟動前端服務:
```bash
@ -364,15 +360,16 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
以下界面說明系統已成功啟動_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
```
```
9. 開發完成後停止 RAGFlow 前端和後端服務:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 技術文檔
- [Quickstart](https://ragflow.io/docs/dev/)

View File

@ -43,7 +43,9 @@
<a href="https://demo.ragflow.io">Demo</a>
</h4>
#
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://raw.githubusercontent.com/infiniflow/ragflow-docs/refs/heads/image/image/ragflow-octoverse.png" width="1200"/>
</div>
<div align="center">
<a href="https://trendshift.io/repositories/9064" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9064" alt="infiniflow%2Fragflow | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>