mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
refactor some llm api using openai api format (#1692)
### What problem does this PR solve? refactor some llm api using openai api format ### Type of change - [x] Refactoring --------- Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
@ -113,21 +113,24 @@ class OpenAIEmbed(Base):
|
||||
|
||||
class LocalAIEmbed(Base):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
self.base_url = base_url + "/embeddings"
|
||||
self.headers = {
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
if not base_url:
|
||||
raise ValueError("Local embedding model url cannot be None")
|
||||
if base_url.split("/")[-1] != "v1":
|
||||
base_url = os.path.join(base_url, "v1")
|
||||
self.client = OpenAI(api_key="empty", base_url=base_url)
|
||||
self.model_name = model_name.split("___")[0]
|
||||
|
||||
def encode(self, texts: list, batch_size=None):
|
||||
data = {"model": self.model_name, "input": texts, "encoding_type": "float"}
|
||||
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
||||
|
||||
return np.array([d["embedding"] for d in res["data"]]), 1024
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
res = self.client.embeddings.create(input=texts, model=self.model_name)
|
||||
return (
|
||||
np.array([d.embedding for d in res.data]),
|
||||
1024,
|
||||
) # local embedding for LmStudio donot count tokens
|
||||
|
||||
def encode_queries(self, text):
|
||||
embds, cnt = self.encode([text])
|
||||
return np.array(embds[0]), cnt
|
||||
res = self.client.embeddings.create(text, model=self.model_name)
|
||||
return np.array(res.data[0].embedding), 1024
|
||||
|
||||
|
||||
class AzureEmbed(OpenAIEmbed):
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
@ -502,7 +505,7 @@ class NvidiaEmbed(Base):
|
||||
return np.array(embds[0]), cnt
|
||||
|
||||
|
||||
class LmStudioEmbed(Base):
|
||||
class LmStudioEmbed(LocalAIEmbed):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
if not base_url:
|
||||
raise ValueError("Local llm url cannot be None")
|
||||
@ -510,14 +513,3 @@ class LmStudioEmbed(Base):
|
||||
self.base_url = os.path.join(base_url, "v1")
|
||||
self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
|
||||
self.model_name = model_name
|
||||
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
res = self.client.embeddings.create(input=texts, model=self.model_name)
|
||||
return (
|
||||
np.array([d.embedding for d in res.data]),
|
||||
1024,
|
||||
) # local embedding for LmStudio donot count tokens
|
||||
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(text, model=self.model_name)
|
||||
return np.array(res.data[0].embedding), 1024
|
||||
|
||||
Reference in New Issue
Block a user