refactor some llm api using openai api format (#1692)

### What problem does this PR solve?

refactor some llm api using openai api format

### Type of change

- [x] Refactoring

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
黄腾
2024-07-25 10:23:35 +08:00
committed by GitHub
parent d5f87a5498
commit e67bfca552
3 changed files with 58 additions and 240 deletions

View File

@ -378,7 +378,7 @@ class OllamaCV(Base):
def chat(self, system, history, gen_conf, image=""):
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
try:
for his in history:
if his["role"] == "user":
@ -433,27 +433,16 @@ class OllamaCV(Base):
yield 0
class LocalAICV(Base):
class LocalAICV(GptV4):
def __init__(self, key, model_name, base_url, lang="Chinese"):
if not base_url:
raise ValueError("Local cv model url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="empty", base_url=base_url)
self.model_name = model_name.split("___")[0]
self.lang = lang
def describe(self, image, max_tokens=300):
b64 = self.image2base64(image)
prompt = self.prompt(b64)
for i in range(len(prompt)):
for c in prompt[i]["content"]:
if "text" in c:
c["type"] = "text"
res = self.client.chat.completions.create(
model=self.model_name,
messages=prompt,
max_tokens=max_tokens,
)
return res.choices[0].message.content.strip(), res.usage.total_tokens
class XinferenceCV(Base):
def __init__(self, key, model_name="", lang="Chinese", base_url=""):
@ -549,60 +538,19 @@ class GeminiCV(Base):
yield response._chunks[-1].usage_metadata.total_token_count
class OpenRouterCV(Base):
class OpenRouterCV(GptV4):
def __init__(
self,
key,
model_name,
lang="Chinese",
base_url="https://openrouter.ai/api/v1/chat/completions",
base_url="https://openrouter.ai/api/v1",
):
if not base_url:
base_url = "https://openrouter.ai/api/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
self.lang = lang
self.base_url = "https://openrouter.ai/api/v1/chat/completions"
self.key = key
def describe(self, image, max_tokens=300):
b64 = self.image2base64(image)
response = requests.post(
url=self.base_url,
headers={
"Authorization": f"Bearer {self.key}",
},
data=json.dumps(
{
"model": self.model_name,
"messages": self.prompt(b64),
"max_tokens": max_tokens,
}
),
)
response = response.json()
return (
response["choices"][0]["message"]["content"].strip(),
response["usage"]["total_tokens"],
)
def prompt(self, b64):
return [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{b64}"},
},
{
"type": "text",
"text": (
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
if self.lang.lower() == "chinese"
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
),
},
],
}
]
class LocalCV(Base):
@ -675,12 +623,12 @@ class NvidiaCV(Base):
]
class LmStudioCV(LocalAICV):
class LmStudioCV(GptV4):
def __init__(self, key, model_name, base_url, lang="Chinese"):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split('/')[-1] != 'v1':
self.base_url = os.path.join(base_url,'v1')
self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
self.model_name = model_name
self.lang = lang