Don't rerank for infinity (#10579)

### What problem does this PR solve?

Don't need rerank for infinity since Infinity normalizes each way score
before fusion.

### Type of change

- [x] Refactoring
This commit is contained in:
Zhichang Yu
2025-10-15 20:15:49 +08:00
committed by GitHub
parent 205a5eb9f5
commit e48bec1cbf
2 changed files with 21 additions and 12 deletions

View File

@ -17,6 +17,7 @@ import json
import logging
import re
import math
import os
from collections import OrderedDict
from dataclasses import dataclass
@ -154,7 +155,7 @@ class Dealer:
query_vector=q_vec,
aggregation=aggs,
highlight=highlight,
field=self.dataStore.getFields(res, src),
field=self.dataStore.getFields(res, src + ["_score"]),
keywords=keywords
)
@ -354,10 +355,8 @@ class Dealer:
if not question:
return ranks
RERANK_LIMIT = 64
RERANK_LIMIT = int(RERANK_LIMIT//page_size + ((RERANK_LIMIT%page_size)/(page_size*1.) + 0.5)) * page_size if page_size>1 else 1
if RERANK_LIMIT < 1: ## when page_size is very large the RERANK_LIMIT will be 0.
RERANK_LIMIT = 1
# Ensure RERANK_LIMIT is multiple of page_size
RERANK_LIMIT = math.ceil(64/page_size) * page_size if page_size>1 else 1
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "page": math.ceil(page_size*page/RERANK_LIMIT), "size": RERANK_LIMIT,
"question": question, "vector": True, "topk": top,
"similarity": similarity_threshold,
@ -376,15 +375,25 @@ class Dealer:
vector_similarity_weight,
rank_feature=rank_feature)
else:
sim, tsim, vsim = self.rerank(
sres, question, 1 - vector_similarity_weight, vector_similarity_weight,
rank_feature=rank_feature)
lower_case_doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
if lower_case_doc_engine == "elasticsearch":
# ElasticSearch doesn't normalize each way score before fusion.
sim, tsim, vsim = self.rerank(
sres, question, 1 - vector_similarity_weight, vector_similarity_weight,
rank_feature=rank_feature)
else:
# Don't need rerank here since Infinity normalizes each way score before fusion.
sim = [sres.field[id].get("_score", 0.0) for id in sres.ids]
tsim = sim
vsim = sim
# Already paginated in search function
idx = np.argsort(sim * -1)[(page - 1) * page_size:page * page_size]
begin = ((page % (RERANK_LIMIT//page_size)) - 1) * page_size
sim = sim[begin : begin + page_size]
sim_np = np.array(sim)
idx = np.argsort(sim_np * -1)
dim = len(sres.query_vector)
vector_column = f"q_{dim}_vec"
zero_vector = [0.0] * dim
sim_np = np.array(sim)
filtered_count = (sim_np >= similarity_threshold).sum()
ranks["total"] = int(filtered_count) # Convert from np.int64 to Python int otherwise JSON serializable error
for i in idx:

View File

@ -445,8 +445,8 @@ class InfinityConnection(DocStoreConnection):
self.connPool.release_conn(inf_conn)
res = concat_dataframes(df_list, output)
if matchExprs:
res["Sum"] = res[score_column] + res[PAGERANK_FLD]
res = res.sort_values(by="Sum", ascending=False).reset_index(drop=True).drop(columns=["Sum"])
res["_score"] = res[score_column] + res[PAGERANK_FLD]
res = res.sort_values(by="_score", ascending=False).reset_index(drop=True)
res = res.head(limit)
logger.debug(f"INFINITY search final result: {str(res)}")
return res, total_hits_count