add support for cohere (#1849)

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
黄腾
2024-08-07 18:40:51 +08:00
committed by GitHub
parent 60428c4ad2
commit e34817c2a9
10 changed files with 260 additions and 6 deletions

View File

@ -37,7 +37,8 @@ EmbeddingModel = {
"Gemini": GeminiEmbed,
"NVIDIA": NvidiaEmbed,
"LM-Studio": LmStudioEmbed,
"OpenAI-API-Compatible": OpenAI_APIEmbed
"OpenAI-API-Compatible": OpenAI_APIEmbed,
"cohere": CoHereEmbed
}
@ -81,7 +82,8 @@ ChatModel = {
"StepFun": StepFunChat,
"NVIDIA": NvidiaChat,
"LM-Studio": LmStudioChat,
"OpenAI-API-Compatible": OpenAI_APIChat
"OpenAI-API-Compatible": OpenAI_APIChat,
"cohere": CoHereChat
}
@ -92,7 +94,8 @@ RerankModel = {
"Xinference": XInferenceRerank,
"NVIDIA": NvidiaRerank,
"LM-Studio": LmStudioRerank,
"OpenAI-API-Compatible": OpenAI_APIRerank
"OpenAI-API-Compatible": OpenAI_APIRerank,
"cohere": CoHereRerank
}

View File

@ -900,3 +900,84 @@ class OpenAI_APIChat(Base):
base_url = os.path.join(base_url, "v1")
model_name = model_name.split("___")[0]
super().__init__(key, model_name, base_url)
class CoHereChat(Base):
def __init__(self, key, model_name, base_url=""):
from cohere import Client
self.client = Client(api_key=key)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "top_p" in gen_conf:
gen_conf["p"] = gen_conf.pop("top_p")
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
gen_conf.pop("presence_penalty")
for item in history:
if "role" in item and item["role"] == "user":
item["role"] = "USER"
if "role" in item and item["role"] == "assistant":
item["role"] = "CHATBOT"
if "content" in item:
item["message"] = item.pop("content")
mes = history.pop()["message"]
ans = ""
try:
response = self.client.chat(
model=self.model_name, chat_history=history, message=mes, **gen_conf
)
ans = response.text
if response.finish_reason == "MAX_TOKENS":
ans += (
"...\nFor the content length reason, it stopped, continue?"
if is_english([ans])
else "······\n由于长度的原因,回答被截断了,要继续吗?"
)
return (
ans,
response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
if "top_p" in gen_conf:
gen_conf["p"] = gen_conf.pop("top_p")
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
gen_conf.pop("presence_penalty")
for item in history:
if "role" in item and item["role"] == "user":
item["role"] = "USER"
if "role" in item and item["role"] == "assistant":
item["role"] = "CHATBOT"
if "content" in item:
item["message"] = item.pop("content")
mes = history.pop()["message"]
ans = ""
total_tokens = 0
try:
response = self.client.chat_stream(
model=self.model_name, chat_history=history, message=mes, **gen_conf
)
for resp in response:
if resp.event_type == "text-generation":
ans += resp.text
total_tokens += num_tokens_from_string(resp.text)
elif resp.event_type == "stream-end":
if resp.finish_reason == "MAX_TOKENS":
ans += (
"...\nFor the content length reason, it stopped, continue?"
if is_english([ans])
else "······\n由于长度的原因,回答被截断了,要继续吗?"
)
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens

View File

@ -522,4 +522,34 @@ class OpenAI_APIEmbed(OpenAIEmbed):
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name.split("___")[0]
self.model_name = model_name.split("___")[0]
class CoHereEmbed(Base):
def __init__(self, key, model_name, base_url=None):
from cohere import Client
self.client = Client(api_key=key)
self.model_name = model_name
def encode(self, texts: list, batch_size=32):
res = self.client.embed(
texts=texts,
model=self.model_name,
input_type="search_query",
embedding_types=["float"],
)
return np.array([d for d in res.embeddings.float]), int(
res.meta.billed_units.input_tokens
)
def encode_queries(self, text):
res = self.client.embed(
texts=[text],
model=self.model_name,
input_type="search_query",
embedding_types=["float"],
)
return np.array([d for d in res.embeddings.float]), int(
res.meta.billed_units.input_tokens
)

View File

@ -203,7 +203,9 @@ class NvidiaRerank(Base):
"top_n": len(texts),
}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
return (np.array([d["logit"] for d in res["rankings"]]), token_count)
rank = np.array([d["logit"] for d in res["rankings"]])
indexs = [d["index"] for d in res["rankings"]]
return rank[indexs], token_count
class LmStudioRerank(Base):
@ -220,3 +222,26 @@ class OpenAI_APIRerank(Base):
def similarity(self, query: str, texts: list):
raise NotImplementedError("The api has not been implement")
class CoHereRerank(Base):
def __init__(self, key, model_name, base_url=None):
from cohere import Client
self.client = Client(api_key=key)
self.model_name = model_name
def similarity(self, query: str, texts: list):
token_count = num_tokens_from_string(query) + sum(
[num_tokens_from_string(t) for t in texts]
)
res = self.client.rerank(
model=self.model_name,
query=query,
documents=texts,
top_n=len(texts),
return_documents=False,
)
rank = np.array([d.relevance_score for d in res.results])
indexs = [d.index for d in res.results]
return rank[indexs], token_count