Test chat API and refine ppt chunker (#42)

This commit is contained in:
KevinHuSh
2024-01-23 19:45:36 +08:00
committed by GitHub
parent 34b2ab3b2f
commit e32ef75e99
10 changed files with 226 additions and 91 deletions

View File

@ -11,6 +11,11 @@ from io import BytesIO
class HuChunker:
@dataclass
class Fields:
text_chunks: List = None
table_chunks: List = None
def __init__(self):
self.MAX_LVL = 12
self.proj_patt = [
@ -228,11 +233,6 @@ class HuChunker:
class PdfChunker(HuChunker):
@dataclass
class Fields:
text_chunks: List = None
table_chunks: List = None
def __init__(self, pdf_parser):
self.pdf = pdf_parser
super().__init__()
@ -293,11 +293,6 @@ class PdfChunker(HuChunker):
class DocxChunker(HuChunker):
@dataclass
class Fields:
text_chunks: List = None
table_chunks: List = None
def __init__(self, doc_parser):
self.doc = doc_parser
super().__init__()
@ -344,11 +339,6 @@ class DocxChunker(HuChunker):
class ExcelChunker(HuChunker):
@dataclass
class Fields:
text_chunks: List = None
table_chunks: List = None
def __init__(self, excel_parser):
self.excel = excel_parser
super().__init__()
@ -370,18 +360,51 @@ class PptChunker(HuChunker):
def __init__(self):
super().__init__()
def __extract(self, shape):
if shape.shape_type == 19:
tb = shape.table
rows = []
for i in range(1, len(tb.rows)):
rows.append("; ".join([tb.cell(0, j).text + ": " + tb.cell(i, j).text for j in range(len(tb.columns)) if tb.cell(i, j)]))
return "\n".join(rows)
if shape.has_text_frame:
return shape.text_frame.text
if shape.shape_type == 6:
texts = []
for p in shape.shapes:
t = self.__extract(p)
if t: texts.append(t)
return "\n".join(texts)
def __call__(self, fnm):
from pptx import Presentation
ppt = Presentation(fnm) if isinstance(
fnm, str) else Presentation(
BytesIO(fnm))
flds = self.Fields()
flds.text_chunks = []
txts = []
for slide in ppt.slides:
texts = []
for shape in slide.shapes:
if hasattr(shape, "text"):
flds.text_chunks.append((shape.text, None))
txt = self.__extract(shape)
if txt: texts.append(txt)
txts.append("\n".join(texts))
import aspose.slides as slides
import aspose.pydrawing as drawing
imgs = []
with slides.Presentation(BytesIO(fnm)) as presentation:
for slide in presentation.slides:
buffered = BytesIO()
slide.get_thumbnail(0.5, 0.5).save(buffered, drawing.imaging.ImageFormat.jpeg)
imgs.append(buffered.getvalue())
assert len(imgs) == len(txts), "Slides text and image do not match: {} vs. {}".format(len(imgs), len(txts))
flds = self.Fields()
flds.text_chunks = [(txts[i], imgs[i]) for i in range(len(txts))]
flds.table_chunks = []
return flds

View File

@ -58,7 +58,8 @@ class Dealer:
if req["available_int"] == 0:
bqry.filter.append(Q("range", available_int={"lt": 1}))
else:
bqry.filter.append(Q("bool", must_not=Q("range", available_int={"lt": 1})))
bqry.filter.append(
Q("bool", must_not=Q("range", available_int={"lt": 1})))
bqry.boost = 0.05
s = Search()
@ -87,9 +88,12 @@ class Dealer:
q_vec = []
if req.get("vector"):
assert emb_mdl, "No embedding model selected"
s["knn"] = self._vector(qst, emb_mdl, req.get("similarity", 0.4), ps)
s["knn"] = self._vector(
qst, emb_mdl, req.get(
"similarity", 0.4), ps)
s["knn"]["filter"] = bqry.to_dict()
if "highlight" in s: del s["highlight"]
if "highlight" in s:
del s["highlight"]
q_vec = s["knn"]["query_vector"]
es_logger.info("【Q】: {}".format(json.dumps(s)))
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
@ -175,7 +179,8 @@ class Dealer:
def trans2floats(txt):
return [float(t) for t in txt.split("\t")]
def insert_citations(self, answer, chunks, chunk_v, embd_mdl, tkweight=0.3, vtweight=0.7):
def insert_citations(self, answer, chunks, chunk_v,
embd_mdl, tkweight=0.3, vtweight=0.7):
pieces = re.split(r"([;。?!\n]|[a-z][.?;!][ \n])", answer)
for i in range(1, len(pieces)):
if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
@ -184,47 +189,57 @@ class Dealer:
idx = []
pieces_ = []
for i, t in enumerate(pieces):
if len(t) < 5: continue
if len(t) < 5:
continue
idx.append(i)
pieces_.append(t)
es_logger.info("{} => {}".format(answer, pieces_))
if not pieces_: return answer
if not pieces_:
return answer
ans_v, c = embd_mdl.encode(pieces_)
ans_v, _ = embd_mdl.encode(pieces_)
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
len(ans_v[0]), len(chunk_v[0]))
chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks]
cites = {}
for i,a in enumerate(pieces_):
for i, a in enumerate(pieces_):
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
chunk_v,
huqie.qie(pieces_[i]).split(" "),
huqie.qie(
pieces_[i]).split(" "),
chunks_tks,
tkweight, vtweight)
mx = np.max(sim) * 0.99
if mx < 0.55: continue
cites[idx[i]] = list(set([str(i) for i in range(len(chunk_v)) if sim[i] > mx]))[:4]
if mx < 0.55:
continue
cites[idx[i]] = list(
set([str(i) for i in range(len(chunk_v)) if sim[i] > mx]))[:4]
res = ""
for i,p in enumerate(pieces):
for i, p in enumerate(pieces):
res += p
if i not in idx:continue
if i not in cites:continue
res += "##%s$$"%"$".join(cites[i])
if i not in idx:
continue
if i not in cites:
continue
res += "##%s$$" % "$".join(cites[i])
return res
def rerank(self, sres, query, tkweight=0.3, vtweight=0.7, cfield="content_ltks"):
def rerank(self, sres, query, tkweight=0.3,
vtweight=0.7, cfield="content_ltks"):
ins_embd = [
Dealer.trans2floats(
sres.field[i]["q_%d_vec" % len(sres.query_vector)]) for i in sres.ids]
sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
if not ins_embd:
return [], [], []
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ") for i in sres.ids]
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ")
for i in sres.ids]
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
ins_embd,
huqie.qie(query).split(" "),
huqie.qie(
query).split(" "),
ins_tw, tkweight, vtweight)
return sim, tksim, vtsim
@ -237,7 +252,8 @@ class Dealer:
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
if not question: return ranks
if not question:
return ranks
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
"question": question, "vector": True,
"similarity": similarity_threshold}