mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
added SVG for Groq model model providers (#1470)
#1432 #1447 This PR adds support for the GROQ LLM (Large Language Model). Groq is an AI solutions company delivering ultra-low latency inference with the first-ever LPU™ Inference Engine. The Groq API enables developers to integrate state-of-the-art LLMs, such as Llama-2 and llama3-70b-8192, into low latency applications with the request limits specified below. Learn more at [groq.com](https://groq.com/). Supported Models | ID | Requests per Minute | Requests per Day | Tokens per Minute | |----------------------|---------------------|------------------|-------------------| | gemma-7b-it | 30 | 14,400 | 15,000 | | gemma2-9b-it | 30 | 14,400 | 15,000 | | llama3-70b-8192 | 30 | 14,400 | 6,000 | | llama3-8b-8192 | 30 | 14,400 | 30,000 | | mixtral-8x7b-32768 | 30 | 14,400 | 5,000 | --------- Co-authored-by: paresh0628 <paresh.tuvoc@gmail.com> Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
This commit is contained in:
@ -32,7 +32,8 @@ EmbeddingModel = {
|
||||
"Jina": JinaEmbed,
|
||||
"BAAI": DefaultEmbedding,
|
||||
"Mistral": MistralEmbed,
|
||||
"Bedrock": BedrockEmbed
|
||||
"Bedrock": BedrockEmbed,
|
||||
"Groq": GroqChat
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -23,6 +23,7 @@ from ollama import Client
|
||||
from volcengine.maas.v2 import MaasService
|
||||
from rag.nlp import is_english
|
||||
from rag.utils import num_tokens_from_string
|
||||
from groq import Groq
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
@ -681,4 +682,63 @@ class GeminiChat(Base):
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield response._chunks[-1].usage_metadata.total_token_count
|
||||
yield response._chunks[-1].usage_metadata.total_token_count
|
||||
|
||||
|
||||
|
||||
class GroqChat:
|
||||
def __init__(self, key, model_name,base_url=''):
|
||||
self.client = Groq(api_key=key)
|
||||
self.model_name = model_name
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_tokens"]:
|
||||
del gen_conf[k]
|
||||
|
||||
ans = ""
|
||||
try:
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=history,
|
||||
**gen_conf
|
||||
)
|
||||
ans = response.choices[0].message.content
|
||||
if response.choices[0].finish_reason == "length":
|
||||
ans += "...\nFor the content length reason, it stopped, continue?" if self.is_english(
|
||||
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
||||
return ans, response.usage.total_tokens
|
||||
except Exception as e:
|
||||
return ans + "\n**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_tokens"]:
|
||||
del gen_conf[k]
|
||||
ans = ""
|
||||
total_tokens = 0
|
||||
try:
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=history,
|
||||
stream=True,
|
||||
**gen_conf
|
||||
)
|
||||
for resp in response:
|
||||
if not resp.choices or not resp.choices[0].delta.content:
|
||||
continue
|
||||
ans += resp.choices[0].delta.content
|
||||
total_tokens += 1
|
||||
if resp.choices[0].finish_reason == "length":
|
||||
ans += "...\nFor the content length reason, it stopped, continue?" if self.is_english(
|
||||
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
||||
yield ans
|
||||
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield total_tokens
|
||||
Reference in New Issue
Block a user