feat: docs for api endpoints to generate openapi specification (#3109)

### What problem does this PR solve?

**Added openapi specification for API routes. This creates swagger UI
similar to FastAPI to better use the API.**
Using python package `flasgger`

### Type of change
- [x] New Feature (non-breaking change which adds functionality)

Not all routes are included since this is a work in progress.

Docs can be accessed on: `{host}:{port}/apidocs`
This commit is contained in:
Matej Horník
2024-11-04 08:35:36 +01:00
committed by GitHub
parent 07c453500b
commit dd1146ec64
8 changed files with 2051 additions and 398 deletions

View File

@ -21,16 +21,72 @@ from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService,LLMService
from api.db.services.llm_service import TenantLLMService, LLMService
from api.db.services.user_service import TenantService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_result, token_required, get_error_data_result, valid,get_parser_config
from api.utils.api_utils import (
get_result,
token_required,
get_error_data_result,
valid,
get_parser_config,
)
@manager.route('/datasets', methods=['POST'])
@manager.route("/datasets", methods=["POST"])
@token_required
def create(tenant_id):
"""
Create a new dataset.
---
tags:
- Datasets
security:
- ApiKeyAuth: []
parameters:
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
- in: body
name: body
description: Dataset creation parameters.
required: true
schema:
type: object
required:
- name
properties:
name:
type: string
description: Name of the dataset.
permission:
type: string
enum: ['me', 'team']
description: Dataset permission.
language:
type: string
enum: ['Chinese', 'English']
description: Language of the dataset.
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "knowledge_graph", "email"]
description: Chunking method.
parser_config:
type: object
description: Parser configuration.
responses:
200:
description: Successful operation.
schema:
type: object
properties:
data:
type: object
"""
req = request.json
e, t = TenantService.get_by_id(tenant_id)
permission = req.get("permission")
@ -38,49 +94,97 @@ def create(tenant_id):
chunk_method = req.get("chunk_method")
parser_config = req.get("parser_config")
valid_permission = ["me", "team"]
valid_language =["Chinese", "English"]
valid_chunk_method = ["naive","manual","qa","table","paper","book","laws","presentation","picture","one","knowledge_graph","email"]
check_validation=valid(permission,valid_permission,language,valid_language,chunk_method,valid_chunk_method)
valid_language = ["Chinese", "English"]
valid_chunk_method = [
"naive",
"manual",
"qa",
"table",
"paper",
"book",
"laws",
"presentation",
"picture",
"one",
"knowledge_graph",
"email",
]
check_validation = valid(
permission,
valid_permission,
language,
valid_language,
chunk_method,
valid_chunk_method,
)
if check_validation:
return check_validation
req["parser_config"]=get_parser_config(chunk_method,parser_config)
req["parser_config"] = get_parser_config(chunk_method, parser_config)
if "tenant_id" in req:
return get_error_data_result(
retmsg="`tenant_id` must not be provided")
return get_error_data_result(retmsg="`tenant_id` must not be provided")
if "chunk_count" in req or "document_count" in req:
return get_error_data_result(retmsg="`chunk_count` or `document_count` must not be provided")
if "name" not in req:
return get_error_data_result(
retmsg="`name` is not empty!")
req['id'] = get_uuid()
retmsg="`chunk_count` or `document_count` must not be provided"
)
if "name" not in req:
return get_error_data_result(retmsg="`name` is not empty!")
req["id"] = get_uuid()
req["name"] = req["name"].strip()
if req["name"] == "":
return get_error_data_result(retmsg="`name` is not empty string!")
if KnowledgebaseService.query(
name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value
):
return get_error_data_result(
retmsg="`name` is not empty string!")
if KnowledgebaseService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(
retmsg="Duplicated dataset name in creating dataset.")
req["tenant_id"] = req['created_by'] = tenant_id
retmsg="Duplicated dataset name in creating dataset."
)
req["tenant_id"] = req["created_by"] = tenant_id
if not req.get("embedding_model"):
req['embedding_model'] = t.embd_id
req["embedding_model"] = t.embd_id
else:
valid_embedding_models=["BAAI/bge-large-zh-v1.5","BAAI/bge-base-en-v1.5","BAAI/bge-large-en-v1.5","BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5","jinaai/jina-embeddings-v2-base-en","jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5","sentence-transformers/all-MiniLM-L6-v2","text-embedding-v2",
"text-embedding-v3","maidalun1020/bce-embedding-base_v1"]
embd_model=LLMService.query(llm_name=req["embedding_model"],model_type="embedding")
valid_embedding_models = [
"BAAI/bge-large-zh-v1.5",
"BAAI/bge-base-en-v1.5",
"BAAI/bge-large-en-v1.5",
"BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5",
"jinaai/jina-embeddings-v2-base-en",
"jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5",
"sentence-transformers/all-MiniLM-L6-v2",
"text-embedding-v2",
"text-embedding-v3",
"maidalun1020/bce-embedding-base_v1",
]
embd_model = LLMService.query(
llm_name=req["embedding_model"], model_type="embedding"
)
if not embd_model:
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
return get_error_data_result(
f"`embedding_model` {req.get('embedding_model')} doesn't exist"
)
if embd_model:
if req["embedding_model"] not in valid_embedding_models and not TenantLLMService.query(tenant_id=tenant_id,model_type="embedding", llm_name=req.get("embedding_model")):
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
if req[
"embedding_model"
] not in valid_embedding_models and not TenantLLMService.query(
tenant_id=tenant_id,
model_type="embedding",
llm_name=req.get("embedding_model"),
):
return get_error_data_result(
f"`embedding_model` {req.get('embedding_model')} doesn't exist"
)
key_mapping = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model"
"embd_id": "embedding_model",
}
mapped_keys = {
new_key: req[old_key]
for new_key, old_key in key_mapping.items()
if old_key in req
}
mapped_keys = {new_key: req[old_key] for new_key, old_key in key_mapping.items() if old_key in req}
req.update(mapped_keys)
if not KnowledgebaseService.save(**req):
return get_error_data_result(retmsg="Create dataset error.(Database error)")
@ -91,21 +195,53 @@ def create(tenant_id):
renamed_data[new_key] = value
return get_result(data=renamed_data)
@manager.route('/datasets', methods=['DELETE'])
@manager.route("/datasets", methods=["DELETE"])
@token_required
def delete(tenant_id):
"""
Delete datasets.
---
tags:
- Datasets
security:
- ApiKeyAuth: []
parameters:
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
- in: body
name: body
description: Dataset deletion parameters.
required: true
schema:
type: object
properties:
ids:
type: array
items:
type: string
description: List of dataset IDs to delete.
responses:
200:
description: Successful operation.
schema:
type: object
"""
req = request.json
if not req:
ids=None
ids = None
else:
ids=req.get("ids")
ids = req.get("ids")
if not ids:
id_list = []
kbs=KnowledgebaseService.query(tenant_id=tenant_id)
kbs = KnowledgebaseService.query(tenant_id=tenant_id)
for kb in kbs:
id_list.append(kb.id)
else:
id_list=ids
id_list = ids
for id in id_list:
kbs = KnowledgebaseService.query(id=id, tenant_id=tenant_id)
if not kbs:
@ -113,19 +249,75 @@ def delete(tenant_id):
for doc in DocumentService.query(kb_id=id):
if not DocumentService.remove_document(doc, tenant_id):
return get_error_data_result(
retmsg="Remove document error.(Database error)")
retmsg="Remove document error.(Database error)"
)
f2d = File2DocumentService.get_by_document_id(doc.id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
FileService.filter_delete(
[
File.source_type == FileSource.KNOWLEDGEBASE,
File.id == f2d[0].file_id,
]
)
File2DocumentService.delete_by_document_id(doc.id)
if not KnowledgebaseService.delete_by_id(id):
return get_error_data_result(
retmsg="Delete dataset error.(Database error)")
return get_error_data_result(retmsg="Delete dataset error.(Database error)")
return get_result(retcode=RetCode.SUCCESS)
@manager.route('/datasets/<dataset_id>', methods=['PUT'])
@manager.route("/datasets/<dataset_id>", methods=["PUT"])
@token_required
def update(tenant_id,dataset_id):
if not KnowledgebaseService.query(id=dataset_id,tenant_id=tenant_id):
def update(tenant_id, dataset_id):
"""
Update a dataset.
---
tags:
- Datasets
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset to update.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
- in: body
name: body
description: Dataset update parameters.
required: true
schema:
type: object
properties:
name:
type: string
description: New name of the dataset.
permission:
type: string
enum: ['me', 'team']
description: Updated permission.
language:
type: string
enum: ['Chinese', 'English']
description: Updated language.
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "knowledge_graph", "email"]
description: Updated chunking method.
parser_config:
type: object
description: Updated parser configuration.
responses:
200:
description: Successful operation.
schema:
type: object
"""
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(retmsg="You don't own the dataset")
req = request.json
e, t = TenantService.get_by_id(tenant_id)
@ -138,91 +330,202 @@ def update(tenant_id,dataset_id):
parser_config = req.get("parser_config")
valid_permission = ["me", "team"]
valid_language = ["Chinese", "English"]
valid_chunk_method = ["naive", "manual", "qa", "table", "paper", "book", "laws", "presentation", "picture", "one",
"knowledge_graph", "email"]
check_validation = valid(permission, valid_permission, language, valid_language, chunk_method, valid_chunk_method)
valid_chunk_method = [
"naive",
"manual",
"qa",
"table",
"paper",
"book",
"laws",
"presentation",
"picture",
"one",
"knowledge_graph",
"email",
]
check_validation = valid(
permission,
valid_permission,
language,
valid_language,
chunk_method,
valid_chunk_method,
)
if check_validation:
return check_validation
if "tenant_id" in req:
if req["tenant_id"] != tenant_id:
return get_error_data_result(
retmsg="Can't change `tenant_id`.")
return get_error_data_result(retmsg="Can't change `tenant_id`.")
e, kb = KnowledgebaseService.get_by_id(dataset_id)
if "parser_config" in req:
temp_dict=kb.parser_config
temp_dict = kb.parser_config
temp_dict.update(req["parser_config"])
req["parser_config"] = temp_dict
if "chunk_count" in req:
if req["chunk_count"] != kb.chunk_num:
return get_error_data_result(
retmsg="Can't change `chunk_count`.")
return get_error_data_result(retmsg="Can't change `chunk_count`.")
req.pop("chunk_count")
if "document_count" in req:
if req['document_count'] != kb.doc_num:
return get_error_data_result(
retmsg="Can't change `document_count`.")
if req["document_count"] != kb.doc_num:
return get_error_data_result(retmsg="Can't change `document_count`.")
req.pop("document_count")
if "chunk_method" in req:
if kb.chunk_num != 0 and req['chunk_method'] != kb.parser_id:
if kb.chunk_num != 0 and req["chunk_method"] != kb.parser_id:
return get_error_data_result(
retmsg="If `chunk_count` is not 0, `chunk_method` is not changeable.")
req['parser_id'] = req.pop('chunk_method')
if req['parser_id'] != kb.parser_id:
retmsg="If `chunk_count` is not 0, `chunk_method` is not changeable."
)
req["parser_id"] = req.pop("chunk_method")
if req["parser_id"] != kb.parser_id:
if not req.get("parser_config"):
req["parser_config"] = get_parser_config(chunk_method, parser_config)
if "embedding_model" in req:
if kb.chunk_num != 0 and req['embedding_model'] != kb.embd_id:
if kb.chunk_num != 0 and req["embedding_model"] != kb.embd_id:
return get_error_data_result(
retmsg="If `chunk_count` is not 0, `embedding_model` is not changeable.")
retmsg="If `chunk_count` is not 0, `embedding_model` is not changeable."
)
if not req.get("embedding_model"):
return get_error_data_result("`embedding_model` can't be empty")
valid_embedding_models=["BAAI/bge-large-zh-v1.5","BAAI/bge-base-en-v1.5","BAAI/bge-large-en-v1.5","BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5","jinaai/jina-embeddings-v2-base-en","jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5","sentence-transformers/all-MiniLM-L6-v2","text-embedding-v2",
"text-embedding-v3","maidalun1020/bce-embedding-base_v1"]
embd_model=LLMService.query(llm_name=req["embedding_model"],model_type="embedding")
valid_embedding_models = [
"BAAI/bge-large-zh-v1.5",
"BAAI/bge-base-en-v1.5",
"BAAI/bge-large-en-v1.5",
"BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5",
"jinaai/jina-embeddings-v2-base-en",
"jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5",
"sentence-transformers/all-MiniLM-L6-v2",
"text-embedding-v2",
"text-embedding-v3",
"maidalun1020/bce-embedding-base_v1",
]
embd_model = LLMService.query(
llm_name=req["embedding_model"], model_type="embedding"
)
if not embd_model:
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
return get_error_data_result(
f"`embedding_model` {req.get('embedding_model')} doesn't exist"
)
if embd_model:
if req["embedding_model"] not in valid_embedding_models and not TenantLLMService.query(tenant_id=tenant_id,model_type="embedding", llm_name=req.get("embedding_model")):
return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
req['embd_id'] = req.pop('embedding_model')
if req[
"embedding_model"
] not in valid_embedding_models and not TenantLLMService.query(
tenant_id=tenant_id,
model_type="embedding",
llm_name=req.get("embedding_model"),
):
return get_error_data_result(
f"`embedding_model` {req.get('embedding_model')} doesn't exist"
)
req["embd_id"] = req.pop("embedding_model")
if "name" in req:
req["name"] = req["name"].strip()
if req["name"].lower() != kb.name.lower() \
and len(KnowledgebaseService.query(name=req["name"], tenant_id=tenant_id,
status=StatusEnum.VALID.value)) > 0:
if (
req["name"].lower() != kb.name.lower()
and len(
KnowledgebaseService.query(
name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value
)
)
> 0
):
return get_error_data_result(
retmsg="Duplicated dataset name in updating dataset.")
retmsg="Duplicated dataset name in updating dataset."
)
if not KnowledgebaseService.update_by_id(kb.id, req):
return get_error_data_result(retmsg="Update dataset error.(Database error)")
return get_result(retcode=RetCode.SUCCESS)
@manager.route('/datasets', methods=['GET'])
@manager.route("/datasets", methods=["GET"])
@token_required
def list(tenant_id):
"""
List datasets.
---
tags:
- Datasets
security:
- ApiKeyAuth: []
parameters:
- in: query
name: id
type: string
required: false
description: Dataset ID to filter.
- in: query
name: name
type: string
required: false
description: Dataset name to filter.
- in: query
name: page
type: integer
required: false
default: 1
description: Page number.
- in: query
name: page_size
type: integer
required: false
default: 1024
description: Number of items per page.
- in: query
name: orderby
type: string
required: false
default: "create_time"
description: Field to order by.
- in: query
name: desc
type: boolean
required: false
default: true
description: Order in descending.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Successful operation.
schema:
type: array
items:
type: object
"""
id = request.args.get("id")
name = request.args.get("name")
kbs = KnowledgebaseService.query(id=id,name=name,status=1)
kbs = KnowledgebaseService.query(id=id, name=name, status=1)
if not kbs:
return get_error_data_result(retmsg="The dataset doesn't exist")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 1024))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False" or request.args.get("desc") == "false" :
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
desc = False
else:
desc = True
tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
kbs = KnowledgebaseService.get_list(
[m["tenant_id"] for m in tenants], tenant_id, page_number, items_per_page, orderby, desc, id, name)
[m["tenant_id"] for m in tenants],
tenant_id,
page_number,
items_per_page,
orderby,
desc,
id,
name,
)
renamed_list = []
for kb in kbs:
key_mapping = {
"chunk_num": "chunk_count",
"doc_num": "document_count",
"parser_id": "chunk_method",
"embd_id": "embedding_model"
"embd_id": "embedding_model",
}
renamed_data = {}
for key, value in kb.items():

File diff suppressed because it is too large Load Diff