mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Light GraphRAG (#4585)
### What problem does this PR solve? #4543 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
141
graphrag/general/community_reports_extractor.py
Normal file
141
graphrag/general/community_reports_extractor.py
Normal file
@ -0,0 +1,141 @@
|
||||
# Copyright (c) 2024 Microsoft Corporation.
|
||||
# Licensed under the MIT License
|
||||
"""
|
||||
Reference:
|
||||
- [graphrag](https://github.com/microsoft/graphrag)
|
||||
"""
|
||||
|
||||
import logging
|
||||
import json
|
||||
import re
|
||||
import traceback
|
||||
from typing import Callable
|
||||
from dataclasses import dataclass
|
||||
import networkx as nx
|
||||
import pandas as pd
|
||||
from graphrag.general import leiden
|
||||
from graphrag.general.community_report_prompt import COMMUNITY_REPORT_PROMPT
|
||||
from graphrag.general.extractor import Extractor
|
||||
from graphrag.general.leiden import add_community_info2graph
|
||||
from rag.llm.chat_model import Base as CompletionLLM
|
||||
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements, dict_has_keys_with_types
|
||||
from rag.utils import num_tokens_from_string
|
||||
from timeit import default_timer as timer
|
||||
|
||||
|
||||
@dataclass
|
||||
class CommunityReportsResult:
|
||||
"""Community reports result class definition."""
|
||||
|
||||
output: list[str]
|
||||
structured_output: list[dict]
|
||||
|
||||
|
||||
class CommunityReportsExtractor(Extractor):
|
||||
"""Community reports extractor class definition."""
|
||||
|
||||
_extraction_prompt: str
|
||||
_output_formatter_prompt: str
|
||||
_on_error: ErrorHandlerFn
|
||||
_max_report_length: int
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm_invoker: CompletionLLM,
|
||||
get_entity: Callable | None = None,
|
||||
set_entity: Callable | None = None,
|
||||
get_relation: Callable | None = None,
|
||||
set_relation: Callable | None = None,
|
||||
max_report_length: int | None = None,
|
||||
):
|
||||
super().__init__(llm_invoker, get_entity=get_entity, set_entity=set_entity, get_relation=get_relation, set_relation=set_relation)
|
||||
"""Init method definition."""
|
||||
self._llm = llm_invoker
|
||||
self._extraction_prompt = COMMUNITY_REPORT_PROMPT
|
||||
self._max_report_length = max_report_length or 1500
|
||||
|
||||
def __call__(self, graph: nx.Graph, callback: Callable | None = None):
|
||||
for node_degree in graph.degree:
|
||||
graph.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
|
||||
|
||||
communities: dict[str, dict[str, list]] = leiden.run(graph, {})
|
||||
total = sum([len(comm.items()) for _, comm in communities.items()])
|
||||
res_str = []
|
||||
res_dict = []
|
||||
over, token_count = 0, 0
|
||||
st = timer()
|
||||
for level, comm in communities.items():
|
||||
logging.info(f"Level {level}: Community: {len(comm.keys())}")
|
||||
for cm_id, ents in comm.items():
|
||||
weight = ents["weight"]
|
||||
ents = ents["nodes"]
|
||||
ent_df = pd.DataFrame(self._get_entity_(ents)).dropna()#[{"entity": n, **graph.nodes[n]} for n in ents])
|
||||
ent_df["entity"] = ent_df["entity_name"]
|
||||
del ent_df["entity_name"]
|
||||
rela_df = pd.DataFrame(self._get_relation_(list(ent_df["entity"]), list(ent_df["entity"]), 10000))
|
||||
rela_df["source"] = rela_df["src_id"]
|
||||
rela_df["target"] = rela_df["tgt_id"]
|
||||
del rela_df["src_id"]
|
||||
del rela_df["tgt_id"]
|
||||
|
||||
prompt_variables = {
|
||||
"entity_df": ent_df.to_csv(index_label="id"),
|
||||
"relation_df": rela_df.to_csv(index_label="id")
|
||||
}
|
||||
text = perform_variable_replacements(self._extraction_prompt, variables=prompt_variables)
|
||||
gen_conf = {"temperature": 0.3}
|
||||
try:
|
||||
response = self._chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
|
||||
token_count += num_tokens_from_string(text + response)
|
||||
response = re.sub(r"^[^\{]*", "", response)
|
||||
response = re.sub(r"[^\}]*$", "", response)
|
||||
response = re.sub(r"\{\{", "{", response)
|
||||
response = re.sub(r"\}\}", "}", response)
|
||||
logging.debug(response)
|
||||
response = json.loads(response)
|
||||
if not dict_has_keys_with_types(response, [
|
||||
("title", str),
|
||||
("summary", str),
|
||||
("findings", list),
|
||||
("rating", float),
|
||||
("rating_explanation", str),
|
||||
]):
|
||||
continue
|
||||
response["weight"] = weight
|
||||
response["entities"] = ents
|
||||
except Exception as e:
|
||||
logging.exception("CommunityReportsExtractor got exception")
|
||||
self._on_error(e, traceback.format_exc(), None)
|
||||
continue
|
||||
|
||||
add_community_info2graph(graph, ents, response["title"])
|
||||
res_str.append(self._get_text_output(response))
|
||||
res_dict.append(response)
|
||||
over += 1
|
||||
if callback:
|
||||
callback(msg=f"Communities: {over}/{total}, elapsed: {timer() - st}s, used tokens: {token_count}")
|
||||
|
||||
return CommunityReportsResult(
|
||||
structured_output=res_dict,
|
||||
output=res_str,
|
||||
)
|
||||
|
||||
def _get_text_output(self, parsed_output: dict) -> str:
|
||||
title = parsed_output.get("title", "Report")
|
||||
summary = parsed_output.get("summary", "")
|
||||
findings = parsed_output.get("findings", [])
|
||||
|
||||
def finding_summary(finding: dict):
|
||||
if isinstance(finding, str):
|
||||
return finding
|
||||
return finding.get("summary")
|
||||
|
||||
def finding_explanation(finding: dict):
|
||||
if isinstance(finding, str):
|
||||
return ""
|
||||
return finding.get("explanation")
|
||||
|
||||
report_sections = "\n\n".join(
|
||||
f"## {finding_summary(f)}\n\n{finding_explanation(f)}" for f in findings
|
||||
)
|
||||
return f"# {title}\n\n{summary}\n\n{report_sections}"
|
||||
Reference in New Issue
Block a user