mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-19 20:16:49 +08:00
@ -1,2 +1,21 @@
|
||||
from .embedding_model import HuEmbedding
|
||||
from .chat_model import GptTurbo
|
||||
import os
|
||||
from .embedding_model import *
|
||||
from .chat_model import *
|
||||
from .cv_model import *
|
||||
|
||||
EmbeddingModel = None
|
||||
ChatModel = None
|
||||
CvModel = None
|
||||
|
||||
|
||||
if os.environ.get("OPENAI_API_KEY"):
|
||||
EmbeddingModel = GptEmbed()
|
||||
ChatModel = GptTurbo()
|
||||
CvModel = GptV4()
|
||||
|
||||
elif os.environ.get("DASHSCOPE_API_KEY"):
|
||||
EmbeddingModel = QWenEmbd()
|
||||
ChatModel = QWenChat()
|
||||
CvModel = QWenCV()
|
||||
else:
|
||||
EmbeddingModel = HuEmbedding()
|
||||
|
||||
@ -1,7 +1,8 @@
|
||||
from abc import ABC
|
||||
import openapi
|
||||
from openai import OpenAI
|
||||
import os
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def chat(self, system, history, gen_conf):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
@ -9,26 +10,27 @@ class Base(ABC):
|
||||
|
||||
class GptTurbo(Base):
|
||||
def __init__(self):
|
||||
openapi.api_key = os.environ["OPENAPI_KEY"]
|
||||
self.client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
res = openapi.ChatCompletion.create(model="gpt-3.5-turbo",
|
||||
messages=history,
|
||||
**gen_conf)
|
||||
res = self.client.chat.completions.create(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=history,
|
||||
**gen_conf)
|
||||
return res.choices[0].message.content.strip()
|
||||
|
||||
|
||||
class QWen(Base):
|
||||
class QWenChat(Base):
|
||||
def chat(self, system, history, gen_conf):
|
||||
from http import HTTPStatus
|
||||
from dashscope import Generation
|
||||
from dashscope.api_entities.dashscope_response import Role
|
||||
# export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
response = Generation.call(
|
||||
Generation.Models.qwen_turbo,
|
||||
messages=messages,
|
||||
result_format='message'
|
||||
Generation.Models.qwen_turbo,
|
||||
messages=history,
|
||||
result_format='message'
|
||||
)
|
||||
if response.status_code == HTTPStatus.OK:
|
||||
return response.output.choices[0]['message']['content']
|
||||
|
||||
66
python/llm/cv_model.py
Normal file
66
python/llm/cv_model.py
Normal file
@ -0,0 +1,66 @@
|
||||
from abc import ABC
|
||||
from openai import OpenAI
|
||||
import os
|
||||
import base64
|
||||
from io import BytesIO
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def describe(self, image, max_tokens=300):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
|
||||
def image2base64(self, image):
|
||||
if isinstance(image, BytesIO):
|
||||
return base64.b64encode(image.getvalue()).decode("utf-8")
|
||||
buffered = BytesIO()
|
||||
try:
|
||||
image.save(buffered, format="JPEG")
|
||||
except Exception as e:
|
||||
image.save(buffered, format="PNG")
|
||||
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
|
||||
def prompt(self, b64):
|
||||
return [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等。",
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{b64}"
|
||||
},
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
class GptV4(Base):
|
||||
def __init__(self):
|
||||
self.client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
|
||||
|
||||
def describe(self, image, max_tokens=300):
|
||||
b64 = self.image2base64(image)
|
||||
|
||||
res = self.client.chat.completions.create(
|
||||
model="gpt-4-vision-preview",
|
||||
messages=self.prompt(b64),
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
return res.choices[0].message.content.strip()
|
||||
|
||||
|
||||
class QWenCV(Base):
|
||||
def describe(self, image, max_tokens=300):
|
||||
from http import HTTPStatus
|
||||
from dashscope import MultiModalConversation
|
||||
# export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
|
||||
response = MultiModalConversation.call(model=MultiModalConversation.Models.qwen_vl_chat_v1,
|
||||
messages=self.prompt(self.image2base64(image)))
|
||||
if response.status_code == HTTPStatus.OK:
|
||||
return response.output.choices[0]['message']['content']
|
||||
return response.message
|
||||
@ -1,8 +1,11 @@
|
||||
from abc import ABC
|
||||
from openai import OpenAI
|
||||
from FlagEmbedding import FlagModel
|
||||
import torch
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
@ -22,11 +25,37 @@ class HuEmbedding(Base):
|
||||
|
||||
"""
|
||||
self.model = FlagModel("BAAI/bge-large-zh-v1.5",
|
||||
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
||||
use_fp16=torch.cuda.is_available())
|
||||
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
||||
use_fp16=torch.cuda.is_available())
|
||||
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
res = []
|
||||
for i in range(0, len(texts), batch_size):
|
||||
res.extend(self.model.encode(texts[i:i+batch_size]).tolist())
|
||||
res.extend(self.model.encode(texts[i:i + batch_size]).tolist())
|
||||
return np.array(res)
|
||||
|
||||
|
||||
class GptEmbed(Base):
|
||||
def __init__(self):
|
||||
self.client = OpenAI(api_key=os.envirement["OPENAI_API_KEY"])
|
||||
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
res = self.client.embeddings.create(input=texts,
|
||||
model="text-embedding-ada-002")
|
||||
return [d["embedding"] for d in res["data"]]
|
||||
|
||||
|
||||
class QWenEmbd(Base):
|
||||
def encode(self, texts: list, batch_size=32, text_type="document"):
|
||||
# export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
|
||||
import dashscope
|
||||
from http import HTTPStatus
|
||||
res = []
|
||||
for txt in texts:
|
||||
resp = dashscope.TextEmbedding.call(
|
||||
model=dashscope.TextEmbedding.Models.text_embedding_v2,
|
||||
input=txt[:2048],
|
||||
text_type=text_type
|
||||
)
|
||||
res.append(resp["output"]["embeddings"][0]["embedding"])
|
||||
return res
|
||||
|
||||
Reference in New Issue
Block a user