add llm API (#19)

* add llm API

* refine llm API
This commit is contained in:
KevinHuSh
2023-12-28 13:50:13 +08:00
committed by GitHub
parent cdd956568d
commit d0db329fef
17 changed files with 349 additions and 170 deletions

View File

@ -1,2 +1,21 @@
from .embedding_model import HuEmbedding
from .chat_model import GptTurbo
import os
from .embedding_model import *
from .chat_model import *
from .cv_model import *
EmbeddingModel = None
ChatModel = None
CvModel = None
if os.environ.get("OPENAI_API_KEY"):
EmbeddingModel = GptEmbed()
ChatModel = GptTurbo()
CvModel = GptV4()
elif os.environ.get("DASHSCOPE_API_KEY"):
EmbeddingModel = QWenEmbd()
ChatModel = QWenChat()
CvModel = QWenCV()
else:
EmbeddingModel = HuEmbedding()

View File

@ -1,7 +1,8 @@
from abc import ABC
import openapi
from openai import OpenAI
import os
class Base(ABC):
def chat(self, system, history, gen_conf):
raise NotImplementedError("Please implement encode method!")
@ -9,26 +10,27 @@ class Base(ABC):
class GptTurbo(Base):
def __init__(self):
openapi.api_key = os.environ["OPENAPI_KEY"]
self.client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
def chat(self, system, history, gen_conf):
history.insert(0, {"role": "system", "content": system})
res = openapi.ChatCompletion.create(model="gpt-3.5-turbo",
messages=history,
**gen_conf)
res = self.client.chat.completions.create(
model="gpt-3.5-turbo",
messages=history,
**gen_conf)
return res.choices[0].message.content.strip()
class QWen(Base):
class QWenChat(Base):
def chat(self, system, history, gen_conf):
from http import HTTPStatus
from dashscope import Generation
from dashscope.api_entities.dashscope_response import Role
# export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
history.insert(0, {"role": "system", "content": system})
response = Generation.call(
Generation.Models.qwen_turbo,
messages=messages,
result_format='message'
Generation.Models.qwen_turbo,
messages=history,
result_format='message'
)
if response.status_code == HTTPStatus.OK:
return response.output.choices[0]['message']['content']

66
python/llm/cv_model.py Normal file
View File

@ -0,0 +1,66 @@
from abc import ABC
from openai import OpenAI
import os
import base64
from io import BytesIO
class Base(ABC):
def describe(self, image, max_tokens=300):
raise NotImplementedError("Please implement encode method!")
def image2base64(self, image):
if isinstance(image, BytesIO):
return base64.b64encode(image.getvalue()).decode("utf-8")
buffered = BytesIO()
try:
image.save(buffered, format="JPEG")
except Exception as e:
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def prompt(self, b64):
return [
{
"role": "user",
"content": [
{
"type": "text",
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等。",
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{b64}"
},
},
],
}
]
class GptV4(Base):
def __init__(self):
self.client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
def describe(self, image, max_tokens=300):
b64 = self.image2base64(image)
res = self.client.chat.completions.create(
model="gpt-4-vision-preview",
messages=self.prompt(b64),
max_tokens=max_tokens,
)
return res.choices[0].message.content.strip()
class QWenCV(Base):
def describe(self, image, max_tokens=300):
from http import HTTPStatus
from dashscope import MultiModalConversation
# export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
response = MultiModalConversation.call(model=MultiModalConversation.Models.qwen_vl_chat_v1,
messages=self.prompt(self.image2base64(image)))
if response.status_code == HTTPStatus.OK:
return response.output.choices[0]['message']['content']
return response.message

View File

@ -1,8 +1,11 @@
from abc import ABC
from openai import OpenAI
from FlagEmbedding import FlagModel
import torch
import os
import numpy as np
class Base(ABC):
def encode(self, texts: list, batch_size=32):
raise NotImplementedError("Please implement encode method!")
@ -22,11 +25,37 @@ class HuEmbedding(Base):
"""
self.model = FlagModel("BAAI/bge-large-zh-v1.5",
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=torch.cuda.is_available())
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=torch.cuda.is_available())
def encode(self, texts: list, batch_size=32):
res = []
for i in range(0, len(texts), batch_size):
res.extend(self.model.encode(texts[i:i+batch_size]).tolist())
res.extend(self.model.encode(texts[i:i + batch_size]).tolist())
return np.array(res)
class GptEmbed(Base):
def __init__(self):
self.client = OpenAI(api_key=os.envirement["OPENAI_API_KEY"])
def encode(self, texts: list, batch_size=32):
res = self.client.embeddings.create(input=texts,
model="text-embedding-ada-002")
return [d["embedding"] for d in res["data"]]
class QWenEmbd(Base):
def encode(self, texts: list, batch_size=32, text_type="document"):
# export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
import dashscope
from http import HTTPStatus
res = []
for txt in texts:
resp = dashscope.TextEmbedding.call(
model=dashscope.TextEmbedding.Models.text_embedding_v2,
input=txt[:2048],
text_type=text_type
)
res.append(resp["output"]["embeddings"][0]["embedding"])
return res