Feat: Support more chunking methods (#11000)

### What problem does this PR solve?

Feat: Support more chunking methods #10772 

This PR enables multiple chunking methods — including books, laws,
naive, one, and presentation — to be used with all existing PDF parsers
(DeepDOC, MinerU, Docling, TCADP, Plain Text, and Vision modes).

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Billy Bao
2025-11-05 13:00:42 +08:00
committed by GitHub
parent f126875ec6
commit cf9611c96f
6 changed files with 264 additions and 133 deletions

View File

@ -20,14 +20,11 @@ from io import BytesIO
from PIL import Image
from common.constants import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.parser.pdf_parser import VisionParser
from rag.nlp import tokenize, is_english
from rag.nlp import rag_tokenizer
from deepdoc.parser import PdfParser, PptParser, PlainParser
from PyPDF2 import PdfReader as pdf2_read
from rag.app.naive import plaintext_parser, PARSERS
class Ppt(PptParser):
def __call__(self, fnm, from_page, to_page, callback=None):
@ -54,7 +51,6 @@ class Ppt(PptParser):
self.is_english = is_english(txts)
return [(txts[i], imgs[i]) for i in range(len(txts))]
class Pdf(PdfParser):
def __init__(self):
super().__init__()
@ -84,7 +80,7 @@ class Pdf(PdfParser):
res.append((lines, self.page_images[i]))
callback(0.9, "Page {}~{}: Parsing finished".format(
from_page, min(to_page, self.total_page)))
return res
return res, []
class PlainPdf(PlainParser):
@ -95,7 +91,7 @@ class PlainPdf(PlainParser):
for page in self.pdf.pages[from_page: to_page]:
page_txt.append(page.extract_text())
callback(0.9, "Parsing finished")
return [(txt, None) for txt in page_txt]
return [(txt, None) for txt in page_txt], []
def chunk(filename, binary=None, from_page=0, to_page=100000,
@ -130,20 +126,33 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
return res
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
layout_recognizer = parser_config.get("layout_recognize", "DeepDOC")
if layout_recognizer == "DeepDOC":
pdf_parser = Pdf()
sections = pdf_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)
elif layout_recognizer == "Plain Text":
pdf_parser = PlainParser()
sections, _ = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page,
callback=callback)
else:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT, llm_name=layout_recognizer, lang=lang)
pdf_parser = VisionParser(vision_model=vision_model, **kwargs)
sections, _ = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page,
callback=callback)
if isinstance(layout_recognizer, bool):
layout_recognizer = "DeepDOC" if layout_recognizer else "Plain Text"
name = layout_recognizer.strip().lower()
parser = PARSERS.get(name, plaintext_parser)
callback(0.1, "Start to parse.")
sections, _, _ = parser(
filename = filename,
binary = binary,
from_page = from_page,
to_page = to_page,
lang = lang,
callback = callback,
pdf_cls = Pdf,
**kwargs
)
if not sections:
return []
if name in ["tcadp", "docling", "mineru"]:
parser_config["chunk_token_num"] = 0
callback(0.8, "Finish parsing.")
for pn, (txt, img) in enumerate(sections):
d = copy.deepcopy(doc)
pn += from_page