refa: Optimize create dataset validation (#7451)

### What problem does this PR solve?

Optimize dataset validation and add function docs

### Type of change

- [x] Refactoring
This commit is contained in:
liu an
2025-05-06 17:38:06 +08:00
committed by GitHub
parent 2f768b96e8
commit c98933499a
6 changed files with 333 additions and 93 deletions

View File

@ -14,13 +14,102 @@
# limitations under the License.
#
from enum import auto
from typing import Annotated, List, Optional
from typing import Annotated, Any
from flask import Request
from pydantic import BaseModel, Field, StringConstraints, ValidationError, field_validator
from strenum import StrEnum
from werkzeug.exceptions import BadRequest, UnsupportedMediaType
from api.constants import DATASET_NAME_LIMIT
def validate_and_parse_json_request(request: Request, validator: type[BaseModel]) -> tuple[dict[str, Any] | None, str | None]:
"""Validates and parses JSON requests through a multi-stage validation pipeline.
Implements a robust four-stage validation process:
1. Content-Type verification (must be application/json)
2. JSON syntax validation
3. Payload structure type checking
4. Pydantic model validation with error formatting
Args:
request (Request): Flask request object containing HTTP payload
Returns:
tuple[Dict[str, Any] | None, str | None]:
- First element:
- Validated dictionary on success
- None on validation failure
- Second element:
- None on success
- Diagnostic error message on failure
Raises:
UnsupportedMediaType: When Content-Type ≠ application/json
BadRequest: For structural JSON syntax errors
ValidationError: When payload violates Pydantic schema rules
Examples:
Successful validation:
```python
# Input: {"name": "Dataset1", "format": "csv"}
# Returns: ({"name": "Dataset1", "format": "csv"}, None)
```
Invalid Content-Type:
```python
# Returns: (None, "Unsupported content type: Expected application/json, got text/xml")
```
Malformed JSON:
```python
# Returns: (None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding")
```
"""
try:
payload = request.get_json() or {}
except UnsupportedMediaType:
return None, f"Unsupported content type: Expected application/json, got {request.content_type}"
except BadRequest:
return None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding"
if not isinstance(payload, dict):
return None, f"Invalid request payload: expected object, got {type(payload).__name__}"
try:
validated_request = validator(**payload)
except ValidationError as e:
return None, format_validation_error_message(e)
parsed_payload = validated_request.model_dump(by_alias=True)
return parsed_payload, None
def format_validation_error_message(e: ValidationError) -> str:
"""Formats validation errors into a standardized string format.
Processes pydantic ValidationError objects to create human-readable error messages
containing field locations, error descriptions, and input values.
Args:
e (ValidationError): The validation error instance containing error details
Returns:
str: Formatted error messages joined by newlines. Each line contains:
- Field path (dot-separated)
- Error message
- Truncated input value (max 128 chars)
Example:
>>> try:
... UserModel(name=123, email="invalid")
... except ValidationError as e:
... print(format_validation_error_message(e))
Field: <name> - Message: <Input should be a valid string> - Value: <123>
Field: <email> - Message: <value is not a valid email address> - Value: <invalid>
"""
error_messages = []
for error in e.errors():
@ -86,7 +175,7 @@ class RaptorConfig(Base):
class GraphragConfig(Base):
use_graphrag: bool = Field(default=False)
entity_types: List[str] = Field(default_factory=lambda: ["organization", "person", "geo", "event", "category"])
entity_types: list[str] = Field(default_factory=lambda: ["organization", "person", "geo", "event", "category"])
method: GraphragMethodEnum = Field(default=GraphragMethodEnum.light)
community: bool = Field(default=False)
resolution: bool = Field(default=False)
@ -97,30 +186,59 @@ class ParserConfig(Base):
auto_questions: int = Field(default=0, ge=0, le=10)
chunk_token_num: int = Field(default=128, ge=1, le=2048)
delimiter: str = Field(default=r"\n", min_length=1)
graphrag: Optional[GraphragConfig] = None
graphrag: GraphragConfig | None = None
html4excel: bool = False
layout_recognize: str = "DeepDOC"
raptor: Optional[RaptorConfig] = None
tag_kb_ids: List[str] = Field(default_factory=list)
raptor: RaptorConfig | None = None
tag_kb_ids: list[str] = Field(default_factory=list)
topn_tags: int = Field(default=1, ge=1, le=10)
filename_embd_weight: Optional[float] = Field(default=None, ge=0.0, le=1.0)
task_page_size: Optional[int] = Field(default=None, ge=1)
pages: Optional[List[List[int]]] = None
filename_embd_weight: float | None = Field(default=None, ge=0.0, le=1.0)
task_page_size: int | None = Field(default=None, ge=1)
pages: list[list[int]] | None = None
class CreateDatasetReq(Base):
name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=128), Field(...)]
avatar: Optional[str] = Field(default=None, max_length=65535)
description: Optional[str] = Field(default=None, max_length=65535)
embedding_model: Annotated[Optional[str], StringConstraints(strip_whitespace=True, max_length=255), Field(default=None, serialization_alias="embd_id")]
name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(...)]
avatar: str | None = Field(default=None, max_length=65535)
description: str | None = Field(default=None, max_length=65535)
embedding_model: Annotated[str | None, StringConstraints(strip_whitespace=True, max_length=255), Field(default=None, serialization_alias="embd_id")]
permission: Annotated[PermissionEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=16), Field(default=PermissionEnum.me)]
chunk_method: Annotated[ChunkMethodnEnum, StringConstraints(strip_whitespace=True, min_length=1, max_length=32), Field(default=ChunkMethodnEnum.naive, serialization_alias="parser_id")]
pagerank: int = Field(default=0, ge=0, le=100)
parser_config: Optional[ParserConfig] = Field(default=None)
parser_config: ParserConfig | None = Field(default=None)
@field_validator("avatar")
@classmethod
def validate_avatar_base64(cls, v: str) -> str:
"""Validates Base64-encoded avatar string format and MIME type compliance.
Implements a three-stage validation workflow:
1. MIME prefix existence check
2. MIME type format validation
3. Supported type verification
Args:
v (str): Raw avatar field value
Returns:
str: Validated Base64 string
Raises:
ValueError: For structural errors in these cases:
- Missing MIME prefix header
- Invalid MIME prefix format
- Unsupported image MIME type
Example:
```python
# Valid case
CreateDatasetReq(avatar="...")
# Invalid cases
CreateDatasetReq(avatar="image/jpeg;base64,...") # Missing 'data:' prefix
CreateDatasetReq(avatar="data:video/mp4;base64,...") # Unsupported MIME type
```
"""
if v is None:
return v
@ -141,22 +259,83 @@ class CreateDatasetReq(Base):
@field_validator("embedding_model", mode="after")
@classmethod
def validate_embedding_model(cls, v: str) -> str:
"""Validates embedding model identifier format compliance.
Validation pipeline:
1. Structural format verification
2. Component non-empty check
3. Value normalization
Args:
v (str): Raw model identifier
Returns:
str: Validated <model_name>@<provider> format
Raises:
ValueError: For these violations:
- Missing @ separator
- Empty model_name/provider
- Invalid component structure
Examples:
Valid: "text-embedding-3-large@openai"
Invalid: "invalid_model" (no @)
Invalid: "@openai" (empty model_name)
Invalid: "text-embedding-3-large@" (empty provider)
"""
if "@" not in v:
raise ValueError("Embedding model must be xxx@yyy")
raise ValueError("Embedding model identifier must follow <model_name>@<provider> format")
components = v.split("@", 1)
if len(components) != 2 or not all(components):
raise ValueError("Both model_name and provider must be non-empty strings")
model_name, provider = components
if not model_name.strip() or not provider.strip():
raise ValueError("Model name and provider cannot be whitespace-only strings")
return v
@field_validator("permission", mode="before")
@classmethod
def permission_auto_lowercase(cls, v: str) -> str:
if isinstance(v, str):
return v.lower()
return v
"""Normalize permission input to lowercase for consistent PermissionEnum matching.
Args:
v (str): Raw input value for the permission field
Returns:
Lowercase string if input is string type, otherwise returns original value
Behavior:
- Converts string inputs to lowercase (e.g., "ME""me")
- Non-string values pass through unchanged
- Works in validation pre-processing stage (before enum conversion)
"""
return v.lower() if isinstance(v, str) else v
@field_validator("parser_config", mode="after")
@classmethod
def validate_parser_config_json_length(cls, v: Optional[ParserConfig]) -> Optional[ParserConfig]:
if v is not None:
json_str = v.model_dump_json()
if len(json_str) > 65535:
raise ValueError("Parser config have at most 65535 characters")
def validate_parser_config_json_length(cls, v: ParserConfig | None) -> ParserConfig | None:
"""Validates serialized JSON length constraints for parser configuration.
Implements a three-stage validation workflow:
1. Null check - bypass validation for empty configurations
2. Model serialization - convert Pydantic model to JSON string
3. Size verification - enforce maximum allowed payload size
Args:
v (ParserConfig | None): Raw parser configuration object
Returns:
ParserConfig | None: Validated configuration object
Raises:
ValueError: When serialized JSON exceeds 65,535 characters
"""
if v is None:
return v
if (json_str := v.model_dump_json()) and len(json_str) > 65535:
raise ValueError(f"Parser config exceeds size limit (max 65,535 characters). Current size: {len(json_str):,}")
return v