Made task_executor async to speedup parsing (#5530)

### What problem does this PR solve?

Made task_executor async to speedup parsing

### Type of change

- [x] Performance Improvement
This commit is contained in:
Zhichang Yu
2025-03-03 18:59:49 +08:00
committed by GitHub
parent abac2ca2c5
commit c813c1ff4c
22 changed files with 576 additions and 1005 deletions

View File

@ -14,15 +14,14 @@
# limitations under the License.
#
import logging
import os
import re
from concurrent.futures import ThreadPoolExecutor, ALL_COMPLETED, wait
from threading import Lock
import umap
import numpy as np
from sklearn.mixture import GaussianMixture
import trio
from graphrag.utils import get_llm_cache, get_embed_cache, set_embed_cache, set_llm_cache
from graphrag.utils import get_llm_cache, get_embed_cache, set_embed_cache, set_llm_cache, chat_limiter
from rag.utils import truncate
@ -68,24 +67,25 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
optimal_clusters = n_clusters[np.argmin(bics)]
return optimal_clusters
def __call__(self, chunks, random_state, callback=None):
async def __call__(self, chunks, random_state, callback=None):
layers = [(0, len(chunks))]
start, end = 0, len(chunks)
if len(chunks) <= 1:
return []
chunks = [(s, a) for s, a in chunks if s and len(a) > 0]
def summarize(ck_idx, lock):
async def summarize(ck_idx, lock):
nonlocal chunks
try:
texts = [chunks[i][0] for i in ck_idx]
len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts))
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
cnt = self._chat("You're a helpful assistant.",
[{"role": "user",
"content": self._prompt.format(cluster_content=cluster_content)}],
{"temperature": 0.3, "max_tokens": self._max_token}
)
async with chat_limiter:
cnt = await trio.to_thread.run_sync(lambda: self._chat("You're a helpful assistant.",
[{"role": "user",
"content": self._prompt.format(cluster_content=cluster_content)}],
{"temperature": 0.3, "max_tokens": self._max_token}
))
cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "",
cnt)
logging.debug(f"SUM: {cnt}")
@ -97,10 +97,11 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
return e
labels = []
lock = Lock()
while end - start > 1:
embeddings = [embd for _, embd in chunks[start: end]]
if len(embeddings) == 2:
summarize([start, start + 1], Lock())
await summarize([start, start + 1], lock)
if callback:
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
labels.extend([0, 0])
@ -122,19 +123,14 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
probs = gm.predict_proba(reduced_embeddings)
lbls = [np.where(prob > self._threshold)[0] for prob in probs]
lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls]
lock = Lock()
with ThreadPoolExecutor(max_workers=int(os.environ.get('GRAPH_EXTRACTOR_MAX_WORKERS', 10))) as executor:
threads = []
async with trio.open_nursery() as nursery:
for c in range(n_clusters):
ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
if not ck_idx:
continue
threads.append(executor.submit(summarize, ck_idx, lock))
wait(threads, return_when=ALL_COMPLETED)
for th in threads:
if isinstance(th.result(), Exception):
raise th.result()
logging.debug(str([t.result() for t in threads]))
async with chat_limiter:
nursery.start_soon(lambda: summarize(ck_idx, lock))
assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters)
labels.extend(lbls)