mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Add resume parser and fix bugs (#59)
* Update .gitignore * Update .gitignore * Add resume parser and fix bugs
This commit is contained in:
@ -3,7 +3,6 @@ import re
|
||||
from collections import Counter
|
||||
|
||||
from api.db import ParserType
|
||||
from rag.cv.ppdetection import PPDet
|
||||
from rag.parser import tokenize
|
||||
from rag.nlp import huqie
|
||||
from rag.parser.pdf_parser import HuParser
|
||||
|
||||
102
rag/app/resume.py
Normal file
102
rag/app/resume.py
Normal file
@ -0,0 +1,102 @@
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import requests
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from rag.nlp import huqie
|
||||
|
||||
from rag.settings import cron_logger
|
||||
from rag.utils import rmSpace
|
||||
|
||||
|
||||
def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
if not re.search(r"\.(pdf|doc|docx|txt)$", filename, flags=re.IGNORECASE): raise NotImplementedError("file type not supported yet(pdf supported)")
|
||||
|
||||
url = os.environ.get("INFINIFLOW_SERVER")
|
||||
if not url:raise EnvironmentError("Please set environment variable: 'INFINIFLOW_SERVER'")
|
||||
token = os.environ.get("INFINIFLOW_TOKEN")
|
||||
if not token:raise EnvironmentError("Please set environment variable: 'INFINIFLOW_TOKEN'")
|
||||
|
||||
if not binary:
|
||||
with open(filename, "rb") as f: binary = f.read()
|
||||
def remote_call():
|
||||
nonlocal filename, binary
|
||||
for _ in range(3):
|
||||
try:
|
||||
res = requests.post(url + "/v1/layout/resume/", files=[(filename, binary)],
|
||||
headers={"Authorization": token}, timeout=180)
|
||||
res = res.json()
|
||||
if res["retcode"] != 0: raise RuntimeError(res["retmsg"])
|
||||
return res["data"]
|
||||
except RuntimeError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
cron_logger.error("resume parsing:" + str(e))
|
||||
|
||||
resume = remote_call()
|
||||
print(json.dumps(resume, ensure_ascii=False, indent=2))
|
||||
|
||||
field_map = {
|
||||
"name_kwd": "姓名/名字",
|
||||
"gender_kwd": "性别(男,女)",
|
||||
"age_int": "年龄/岁/年纪",
|
||||
"phone_kwd": "电话/手机/微信",
|
||||
"email_tks": "email/e-mail/邮箱",
|
||||
"position_name_tks": "职位/职能/岗位/职责",
|
||||
"expect_position_name_tks": "期望职位/期望职能/期望岗位",
|
||||
|
||||
"hightest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||||
"first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||||
"first_major_tks": "第一学历专业",
|
||||
"first_school_name_tks": "第一学历毕业学校",
|
||||
"edu_first_fea_kwd": "第一学历标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
|
||||
|
||||
"degree_kwd": "过往学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
|
||||
"major_tks": "学过的专业/过往专业",
|
||||
"school_name_tks": "学校/毕业院校",
|
||||
"sch_rank_kwd": "学校标签(顶尖学校,精英学校,优质学校,一般学校)",
|
||||
"edu_fea_kwd": "教育标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
|
||||
|
||||
"work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年",
|
||||
"birth_dt": "生日/出生年份",
|
||||
"corp_nm_tks": "就职过的公司/之前的公司/上过班的公司",
|
||||
"corporation_name_tks": "最近就职(上班)的公司/上一家公司",
|
||||
"edu_end_int": "毕业年份",
|
||||
"expect_city_names_tks": "期望城市",
|
||||
"industry_name_tks": "所在行业"
|
||||
}
|
||||
titles = []
|
||||
for n in ["name_kwd", "gender_kwd", "position_name_tks", "age_int"]:
|
||||
v = resume.get(n, "")
|
||||
if isinstance(v, list):v = v[0]
|
||||
if n.find("tks") > 0: v = rmSpace(v)
|
||||
titles.append(str(v))
|
||||
doc = {
|
||||
"docnm_kwd": filename,
|
||||
"title_tks": huqie.qie("-".join(titles)+"-简历")
|
||||
}
|
||||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||||
pairs = []
|
||||
for n,m in field_map.items():
|
||||
if not resume.get(n):continue
|
||||
v = resume[n]
|
||||
if isinstance(v, list):v = " ".join(v)
|
||||
if n.find("tks") > 0: v = rmSpace(v)
|
||||
pairs.append((m, str(v)))
|
||||
|
||||
doc["content_with_weight"] = "\n".join(["{}: {}".format(re.sub(r"([^()]+)", "", k), v) for k,v in pairs])
|
||||
doc["content_ltks"] = huqie.qie(doc["content_with_weight"])
|
||||
doc["content_sm_ltks"] = huqie.qieqie(doc["content_ltks"])
|
||||
for n, _ in field_map.items(): doc[n] = resume[n]
|
||||
|
||||
print(doc)
|
||||
KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": field_map})
|
||||
return [doc]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
def dummy(a, b):
|
||||
pass
|
||||
chunk(sys.argv[1], callback=dummy)
|
||||
@ -1,13 +1,13 @@
|
||||
import copy
|
||||
import random
|
||||
import re
|
||||
from io import BytesIO
|
||||
from xpinyin import Pinyin
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from nltk import word_tokenize
|
||||
from openpyxl import load_workbook
|
||||
from dateutil.parser import parse as datetime_parse
|
||||
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from rag.parser import is_english, tokenize
|
||||
from rag.nlp import huqie, stemmer
|
||||
|
||||
@ -27,18 +27,19 @@ class Excel(object):
|
||||
ws = wb[sheetname]
|
||||
rows = list(ws.rows)
|
||||
headers = [cell.value for cell in rows[0]]
|
||||
missed = set([i for i,h in enumerate(headers) if h is None])
|
||||
headers = [cell.value for i,cell in enumerate(rows[0]) if i not in missed]
|
||||
missed = set([i for i, h in enumerate(headers) if h is None])
|
||||
headers = [cell.value for i, cell in enumerate(rows[0]) if i not in missed]
|
||||
data = []
|
||||
for i, r in enumerate(rows[1:]):
|
||||
row = [cell.value for ii,cell in enumerate(r) if ii not in missed]
|
||||
row = [cell.value for ii, cell in enumerate(r) if ii not in missed]
|
||||
if len(row) != len(headers):
|
||||
fails.append(str(i))
|
||||
continue
|
||||
data.append(row)
|
||||
done += 1
|
||||
if done % 999 == 0:
|
||||
callback(done * 0.6/total, ("Extract records: {}".format(len(res)) + (f"{len(fails)} failure({sheetname}), line: %s..."%(",".join(fails[:3])) if fails else "")))
|
||||
callback(done * 0.6 / total, ("Extract records: {}".format(len(res)) + (
|
||||
f"{len(fails)} failure({sheetname}), line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
res.append(pd.DataFrame(np.array(data), columns=headers))
|
||||
|
||||
callback(0.6, ("Extract records: {}. ".format(done) + (
|
||||
@ -61,9 +62,10 @@ def trans_bool(s):
|
||||
def column_data_type(arr):
|
||||
uni = len(set([a for a in arr if a is not None]))
|
||||
counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
|
||||
trans = {t:f for f,t in [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
|
||||
trans = {t: f for f, t in
|
||||
[(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
|
||||
for a in arr:
|
||||
if a is None:continue
|
||||
if a is None: continue
|
||||
if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")):
|
||||
counts["int"] += 1
|
||||
elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
|
||||
@ -72,17 +74,18 @@ def column_data_type(arr):
|
||||
counts["bool"] += 1
|
||||
elif trans_datatime(str(a)):
|
||||
counts["datetime"] += 1
|
||||
else: counts["text"] += 1
|
||||
counts = sorted(counts.items(), key=lambda x: x[1]*-1)
|
||||
else:
|
||||
counts["text"] += 1
|
||||
counts = sorted(counts.items(), key=lambda x: x[1] * -1)
|
||||
ty = counts[0][0]
|
||||
for i in range(len(arr)):
|
||||
if arr[i] is None:continue
|
||||
if arr[i] is None: continue
|
||||
try:
|
||||
arr[i] = trans[ty](str(arr[i]))
|
||||
except Exception as e:
|
||||
arr[i] = None
|
||||
if ty == "text":
|
||||
if len(arr) > 128 and uni/len(arr) < 0.1:
|
||||
if len(arr) > 128 and uni / len(arr) < 0.1:
|
||||
ty = "keyword"
|
||||
return arr, ty
|
||||
|
||||
@ -123,48 +126,51 @@ def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
|
||||
dfs = [pd.DataFrame(np.array(rows), columns=headers)]
|
||||
|
||||
else: raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
|
||||
else:
|
||||
raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
|
||||
|
||||
res = []
|
||||
PY = Pinyin()
|
||||
fieds_map = {"text": "_tks", "int": "_int", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"}
|
||||
for df in dfs:
|
||||
for n in ["id", "_id", "index", "idx"]:
|
||||
if n in df.columns:del df[n]
|
||||
if n in df.columns: del df[n]
|
||||
clmns = df.columns.values
|
||||
txts = list(copy.deepcopy(clmns))
|
||||
py_clmns = [PY.get_pinyins(n)[0].replace("-", "_") for n in clmns]
|
||||
clmn_tys = []
|
||||
for j in range(len(clmns)):
|
||||
cln,ty = column_data_type(df[clmns[j]])
|
||||
cln, ty = column_data_type(df[clmns[j]])
|
||||
clmn_tys.append(ty)
|
||||
df[clmns[j]] = cln
|
||||
if ty == "text": txts.extend([str(c) for c in cln if c])
|
||||
clmns_map = [(py_clmns[j] + fieds_map[clmn_tys[j]], clmns[j]) for i in range(len(clmns))]
|
||||
# TODO: set this column map to KB parser configuration
|
||||
|
||||
eng = is_english(txts)
|
||||
for ii,row in df.iterrows():
|
||||
for ii, row in df.iterrows():
|
||||
d = {}
|
||||
row_txt = []
|
||||
for j in range(len(clmns)):
|
||||
if row[clmns[j]] is None:continue
|
||||
if row[clmns[j]] is None: continue
|
||||
fld = clmns_map[j][0]
|
||||
d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else huqie.qie(row[clmns[j]])
|
||||
row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
|
||||
if not row_txt:continue
|
||||
if not row_txt: continue
|
||||
tokenize(d, "; ".join(row_txt), eng)
|
||||
print(d)
|
||||
res.append(d)
|
||||
|
||||
KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
|
||||
callback(0.6, "")
|
||||
|
||||
return res
|
||||
|
||||
|
||||
|
||||
if __name__== "__main__":
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
|
||||
|
||||
def dummy(a, b):
|
||||
pass
|
||||
chunk(sys.argv[1], callback=dummy)
|
||||
|
||||
|
||||
chunk(sys.argv[1], callback=dummy)
|
||||
|
||||
Reference in New Issue
Block a user