### What problem does this PR solve?

#4367

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Kevin Hu
2025-01-09 17:07:21 +08:00
committed by GitHub
parent f892d7d426
commit c5da3cdd97
30 changed files with 736 additions and 202 deletions

View File

@ -71,11 +71,13 @@ def findMaxTm(fnm):
pass
return m
tiktoken_cache_dir = get_project_base_directory()
os.environ["TIKTOKEN_CACHE_DIR"] = tiktoken_cache_dir
# encoder = tiktoken.encoding_for_model("gpt-3.5-turbo")
encoder = tiktoken.get_encoding("cl100k_base")
def num_tokens_from_string(string: str) -> int:
"""Returns the number of tokens in a text string."""
try:

View File

@ -176,7 +176,17 @@ class DocStoreConnection(ABC):
@abstractmethod
def search(
self, selectFields: list[str], highlight: list[str], condition: dict, matchExprs: list[MatchExpr], orderBy: OrderByExpr, offset: int, limit: int, indexNames: str|list[str], knowledgebaseIds: list[str]
self, selectFields: list[str],
highlightFields: list[str],
condition: dict,
matchExprs: list[MatchExpr],
orderBy: OrderByExpr,
offset: int,
limit: int,
indexNames: str|list[str],
knowledgebaseIds: list[str],
aggFields: list[str] = [],
rank_feature: dict | None = None
) -> list[dict] | pl.DataFrame:
"""
Search with given conjunctive equivalent filtering condition and return all fields of matched documents
@ -191,7 +201,7 @@ class DocStoreConnection(ABC):
raise NotImplementedError("Not implemented")
@abstractmethod
def insert(self, rows: list[dict], indexName: str, knowledgebaseId: str) -> list[str]:
def insert(self, rows: list[dict], indexName: str, knowledgebaseId: str = None) -> list[str]:
"""
Update or insert a bulk of rows
"""

View File

@ -9,6 +9,7 @@ from elasticsearch import Elasticsearch, NotFoundError
from elasticsearch_dsl import UpdateByQuery, Q, Search, Index
from elastic_transport import ConnectionTimeout
from rag import settings
from rag.settings import TAG_FLD, PAGERANK_FLD
from rag.utils import singleton
from api.utils.file_utils import get_project_base_directory
import polars as pl
@ -20,6 +21,7 @@ ATTEMPT_TIME = 2
logger = logging.getLogger('ragflow.es_conn')
@singleton
class ESConnection(DocStoreConnection):
def __init__(self):
@ -111,9 +113,19 @@ class ESConnection(DocStoreConnection):
CRUD operations
"""
def search(self, selectFields: list[str], highlightFields: list[str], condition: dict, matchExprs: list[MatchExpr],
orderBy: OrderByExpr, offset: int, limit: int, indexNames: str | list[str],
knowledgebaseIds: list[str]) -> list[dict] | pl.DataFrame:
def search(
self, selectFields: list[str],
highlightFields: list[str],
condition: dict,
matchExprs: list[MatchExpr],
orderBy: OrderByExpr,
offset: int,
limit: int,
indexNames: str | list[str],
knowledgebaseIds: list[str],
aggFields: list[str] = [],
rank_feature: dict | None = None
) -> list[dict] | pl.DataFrame:
"""
Refers to https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
"""
@ -175,8 +187,13 @@ class ESConnection(DocStoreConnection):
similarity=similarity,
)
if bqry and rank_feature:
for fld, sc in rank_feature.items():
if fld != PAGERANK_FLD:
fld = f"{TAG_FLD}.{fld}"
bqry.should.append(Q("rank_feature", field=fld, linear={}, boost=sc))
if bqry:
bqry.should.append(Q("rank_feature", field="pagerank_fea", linear={}, boost=10))
s = s.query(bqry)
for field in highlightFields:
s = s.highlight(field)
@ -187,7 +204,7 @@ class ESConnection(DocStoreConnection):
order = "asc" if order == 0 else "desc"
if field in ["page_num_int", "top_int"]:
order_info = {"order": order, "unmapped_type": "float",
"mode": "avg", "numeric_type": "double"}
"mode": "avg", "numeric_type": "double"}
elif field.endswith("_int") or field.endswith("_flt"):
order_info = {"order": order, "unmapped_type": "float"}
else:
@ -195,8 +212,11 @@ class ESConnection(DocStoreConnection):
orders.append({field: order_info})
s = s.sort(*orders)
for fld in aggFields:
s.aggs.bucket(f'aggs_{fld}', 'terms', field=fld, size=1000000)
if limit > 0:
s = s[offset:offset+limit]
s = s[offset:offset + limit]
q = s.to_dict()
logger.debug(f"ESConnection.search {str(indexNames)} query: " + json.dumps(q))
@ -240,7 +260,7 @@ class ESConnection(DocStoreConnection):
logger.error("ESConnection.get timeout for 3 times!")
raise Exception("ESConnection.get timeout.")
def insert(self, documents: list[dict], indexName: str, knowledgebaseId: str) -> list[str]:
def insert(self, documents: list[dict], indexName: str, knowledgebaseId: str = None) -> list[str]:
# Refers to https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
operations = []
for d in documents:
@ -292,44 +312,57 @@ class ESConnection(DocStoreConnection):
if str(e).find("Timeout") > 0:
continue
return False
else:
# update unspecific maybe-multiple documents
bqry = Q("bool")
for k, v in condition.items():
if not isinstance(k, str) or not v:
continue
if k == "exist":
bqry.filter.append(Q("exists", field=v))
continue
if isinstance(v, list):
bqry.filter.append(Q("terms", **{k: v}))
elif isinstance(v, str) or isinstance(v, int):
bqry.filter.append(Q("term", **{k: v}))
else:
raise Exception(
f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.")
scripts = []
for k, v in newValue.items():
if k == "remove":
scripts.append(f"ctx._source.remove('{v}');")
continue
if (not isinstance(k, str) or not v) and k != "available_int":
continue
# update unspecific maybe-multiple documents
bqry = Q("bool")
for k, v in condition.items():
if not isinstance(k, str) or not v:
continue
if k == "exist":
bqry.filter.append(Q("exists", field=v))
continue
if isinstance(v, list):
bqry.filter.append(Q("terms", **{k: v}))
elif isinstance(v, str) or isinstance(v, int):
bqry.filter.append(Q("term", **{k: v}))
else:
raise Exception(
f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.")
scripts = []
params = {}
for k, v in newValue.items():
if k == "remove":
if isinstance(v, str):
scripts.append(f"ctx._source.{k} = '{v}'")
elif isinstance(v, int):
scripts.append(f"ctx._source.{k} = {v}")
else:
raise Exception(
f"newValue `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str.")
scripts.append(f"ctx._source.remove('{v}');")
if isinstance(v, dict):
for kk, vv in v.items():
scripts.append(f"int i=ctx._source.{kk}.indexOf(params.p_{kk});ctx._source.{kk}.remove(i);")
params[f"p_{kk}"] = vv
continue
if k == "add":
if isinstance(v, dict):
for kk, vv in v.items():
scripts.append(f"ctx._source.{kk}.add(params.pp_{kk});")
params[f"pp_{kk}"] = vv.strip()
continue
if (not isinstance(k, str) or not v) and k != "available_int":
continue
if isinstance(v, str):
scripts.append(f"ctx._source.{k} = '{v}'")
elif isinstance(v, int):
scripts.append(f"ctx._source.{k} = {v}")
else:
raise Exception(
f"newValue `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str.")
ubq = UpdateByQuery(
index=indexName).using(
self.es).query(bqry)
ubq = ubq.script(source="; ".join(scripts))
ubq = ubq.script(source="".join(scripts), params=params)
ubq = ubq.params(refresh=True)
ubq = ubq.params(slices=5)
ubq = ubq.params(conflicts="proceed")
for i in range(3):
for _ in range(ATTEMPT_TIME):
try:
_ = ubq.execute()
return True

View File

@ -10,6 +10,7 @@ from infinity.index import IndexInfo, IndexType
from infinity.connection_pool import ConnectionPool
from infinity.errors import ErrorCode
from rag import settings
from rag.settings import PAGERANK_FLD
from rag.utils import singleton
import polars as pl
from polars.series.series import Series
@ -231,8 +232,7 @@ class InfinityConnection(DocStoreConnection):
"""
def search(
self,
selectFields: list[str],
self, selectFields: list[str],
highlightFields: list[str],
condition: dict,
matchExprs: list[MatchExpr],
@ -241,7 +241,9 @@ class InfinityConnection(DocStoreConnection):
limit: int,
indexNames: str | list[str],
knowledgebaseIds: list[str],
) -> tuple[pl.DataFrame, int]:
aggFields: list[str] = [],
rank_feature: dict | None = None
) -> list[dict] | pl.DataFrame:
"""
TODO: Infinity doesn't provide highlight
"""
@ -256,7 +258,7 @@ class InfinityConnection(DocStoreConnection):
if essential_field not in selectFields:
selectFields.append(essential_field)
if matchExprs:
for essential_field in ["score()", "pagerank_fea"]:
for essential_field in ["score()", PAGERANK_FLD]:
selectFields.append(essential_field)
# Prepare expressions common to all tables
@ -346,7 +348,7 @@ class InfinityConnection(DocStoreConnection):
self.connPool.release_conn(inf_conn)
res = concat_dataframes(df_list, selectFields)
if matchExprs:
res = res.sort(pl.col("SCORE") + pl.col("pagerank_fea"), descending=True, maintain_order=True)
res = res.sort(pl.col("SCORE") + pl.col(PAGERANK_FLD), descending=True, maintain_order=True)
res = res.limit(limit)
logger.debug(f"INFINITY search final result: {str(res)}")
return res, total_hits_count
@ -378,7 +380,7 @@ class InfinityConnection(DocStoreConnection):
return res_fields.get(chunkId, None)
def insert(
self, documents: list[dict], indexName: str, knowledgebaseId: str
self, documents: list[dict], indexName: str, knowledgebaseId: str = None
) -> list[str]:
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
@ -456,7 +458,7 @@ class InfinityConnection(DocStoreConnection):
elif k in ["page_num_int", "top_int"]:
assert isinstance(v, list)
newValue[k] = "_".join(f"{num:08x}" for num in v)
elif k == "remove" and v in ["pagerank_fea"]:
elif k == "remove" and v in [PAGERANK_FLD]:
del newValue[k]
newValue[v] = 0
logger.debug(f"INFINITY update table {table_name}, filter {filter}, newValue {newValue}.")