conversation API backend update (#360)

### What problem does this PR solve?


Issue link:#345

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
KevinHuSh
2024-04-15 14:43:44 +08:00
committed by GitHub
parent 5c62b993f2
commit c39b751600
11 changed files with 853 additions and 326 deletions

View File

@ -14,11 +14,11 @@
# limitations under the License.
#
import logging
import sys
import os
import sys
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
from flask import Blueprint, Flask, request
from flask import Blueprint, Flask
from werkzeug.wrappers.request import Request
from flask_cors import CORS
@ -29,9 +29,9 @@ from api.utils import CustomJSONEncoder
from flask_session import Session
from flask_login import LoginManager
from api.settings import RetCode, SECRET_KEY, stat_logger
from api.settings import API_VERSION, CLIENT_AUTHENTICATION, SITE_AUTHENTICATION, access_logger
from api.utils.api_utils import get_json_result, server_error_response
from api.settings import SECRET_KEY, stat_logger
from api.settings import API_VERSION, access_logger
from api.utils.api_utils import server_error_response
from itsdangerous.url_safe import URLSafeTimedSerializer as Serializer
__all__ = ['app']
@ -54,8 +54,8 @@ app.errorhandler(Exception)(server_error_response)
#app.config["LOGIN_DISABLED"] = True
app.config["SESSION_PERMANENT"] = False
app.config["SESSION_TYPE"] = "filesystem"
#app.config['MAX_CONTENT_LENGTH'] = 128 * 1024 * 1024
app.config['MAX_CONTENT_LENGTH'] = os.environ.get("MAX_CONTENT_LENGTH", 128 * 1024 * 1024)
Session(app)
login_manager = LoginManager()
login_manager.init_app(app)
@ -117,4 +117,4 @@ def load_user(web_request):
@app.teardown_request
def _db_close(exc):
close_connection()
close_connection()

196
api/apps/api_app.py Normal file
View File

@ -0,0 +1,196 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from datetime import datetime, timedelta
from flask import request
from flask_login import login_required, current_user
from api.db.db_models import APIToken, API4Conversation
from api.db.services.api_service import APITokenService, API4ConversationService
from api.db.services.dialog_service import DialogService, chat
from api.db.services.user_service import UserTenantService
from api.settings import RetCode
from api.utils import get_uuid, current_timestamp, datetime_format
from api.utils.api_utils import server_error_response, get_data_error_result, get_json_result, validate_request
from itsdangerous import URLSafeTimedSerializer
def generate_confirmation_token(tenent_id):
serializer = URLSafeTimedSerializer(tenent_id)
return "ragflow-" + serializer.dumps(get_uuid(), salt=tenent_id)[2:34]
@manager.route('/new_token', methods=['POST'])
@validate_request("dialog_id")
@login_required
def new_token():
req = request.json
try:
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
tenant_id = tenants[0].tenant_id
obj = {"tenant_id": tenant_id, "token": generate_confirmation_token(tenant_id),
"dialog_id": req["dialog_id"],
"create_time": current_timestamp(),
"create_date": datetime_format(datetime.now()),
"update_time": None,
"update_date": None
}
if not APITokenService.save(**obj):
return get_data_error_result(retmsg="Fail to new a dialog!")
return get_json_result(data=obj)
except Exception as e:
return server_error_response(e)
@manager.route('/token_list', methods=['GET'])
@login_required
def token_list():
try:
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
objs = APITokenService.query(tenant_id=tenants[0].tenant_id, dialog_id=request.args["dialog_id"])
return get_json_result(data=[o.to_dict() for o in objs])
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST'])
@validate_request("tokens", "tenant_id")
@login_required
def rm():
req = request.json
try:
for token in req["tokens"]:
APITokenService.filter_delete(
[APIToken.tenant_id == req["tenant_id"], APIToken.token == token])
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/stats', methods=['GET'])
@login_required
def stats():
try:
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
objs = API4ConversationService.stats(
tenants[0].tenant_id,
request.args.get(
"from_date",
(datetime.now() -
timedelta(
days=7)).strftime("%Y-%m-%d 24:00:00")),
request.args.get(
"to_date",
datetime.now().strftime("%Y-%m-%d %H:%M:%S")))
res = {
"pv": [(o["dt"], o["pv"]) for o in objs],
"uv": [(o["dt"], o["uv"]) for o in objs],
"speed": [(o["dt"], o["tokens"]/o["duration"]) for o in objs],
"tokens": [(o["dt"], o["tokens"]/1000.) for o in objs],
"round": [(o["dt"], o["round"]) for o in objs],
"thumb_up": [(o["dt"], o["thumb_up"]) for o in objs]
}
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)
@manager.route('/new_conversation', methods=['POST'])
@validate_request("user_id")
def set_conversation():
token = request.headers.get('Authorization').split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
req = request.json
try:
e, dia = DialogService.get_by_id(objs[0].dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found")
conv = {
"id": get_uuid(),
"dialog_id": dia.id,
"user_id": req["user_id"],
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
}
API4ConversationService.save(**conv)
e, conv = API4ConversationService.get_by_id(conv["id"])
if not e:
return get_data_error_result(retmsg="Fail to new a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/completion', methods=['POST'])
@validate_request("conversation_id", "messages")
def completion():
token = request.headers.get('Authorization').split()[1]
if not APIToken.query(token=token):
return get_json_result(
data=False, retmsg='Token is not valid!"', retcode=RetCode.AUTHENTICATION_ERROR)
req = request.json
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
msg = []
for m in req["messages"]:
if m["role"] == "system":
continue
if m["role"] == "assistant" and not msg:
continue
msg.append({"role": m["role"], "content": m["content"]})
try:
conv.message.append(msg[-1])
e, dia = DialogService.get_by_id(conv.dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found!")
del req["conversation_id"]
del req["messages"]
ans = chat(dia, msg, **req)
if not conv.reference:
conv.reference = []
conv.reference.append(ans["reference"])
conv.message.append({"role": "assistant", "content": ans["answer"]})
API4ConversationService.append_message(conv.id, conv.to_dict())
APITokenService.APITokenService(token)
return get_json_result(data=ans)
except Exception as e:
return server_error_response(e)
@manager.route('/conversation/<conversation_id>', methods=['GET'])
# @login_required
def get(conversation_id):
try:
e, conv = API4ConversationService.get_by_id(conversation_id)
if not e:
return get_data_error_result(retmsg="Conversation not found!")
return get_json_result(data=conv.to_dict())
except Exception as e:
return server_error_response(e)

View File

@ -60,7 +60,7 @@ def list():
for id in sres.ids:
d = {
"chunk_id": id,
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[id].get(
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[id].get(
"content_with_weight", ""),
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],

View File

@ -13,21 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from flask import request
from flask_login import login_required
from api.db.services.dialog_service import DialogService, ConversationService
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, LLMBundle, TenantLLMService
from api.settings import access_logger, stat_logger, retrievaler, chat_logger
from api.db.services.dialog_service import DialogService, ConversationService, chat
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.utils.api_utils import get_json_result
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp.search import index_name
from rag.utils import num_tokens_from_string, encoder, rmSpace
@manager.route('/set', methods=['POST'])
@ -110,43 +101,6 @@ def list_convsersation():
return server_error_response(e)
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg:
tks_cnts.append(
{"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts:
total += m["count"]
return total
c = count()
if c < max_length:
return c, msg
msg_ = [m for m in msg[:-1] if m["role"] == "system"]
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length:
return c, msg
ll = num_tokens_from_string(msg_[0].content)
l = num_tokens_from_string(msg_[-1].content)
if ll / (ll + l) > 0.8:
m = msg_[0].content
m = encoder.decode(encoder.encode(m)[:max_length - l])
msg[0].content = m
return max_length, msg
m = msg_[1].content
m = encoder.decode(encoder.encode(m)[:max_length - l])
msg[1].content = m
return max_length, msg
@manager.route('/completion', methods=['POST'])
@login_required
@validate_request("conversation_id", "messages")
@ -179,209 +133,3 @@ def completion():
except Exception as e:
return server_error_response(e)
def chat(dialog, messages, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
llm = LLMService.query(llm_name=dialog.llm_id)
if not llm:
llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=dialog.llm_id)
if not llm:
raise LookupError("LLM(%s) not found" % dialog.llm_id)
max_tokens = 1024
else: max_tokens = llm[0].max_tokens
questions = [m["content"] for m in messages if m["role"] == "user"]
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
prompt_config = dialog.prompt_config
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
# try to use sql if field mapping is good to go
if field_map:
chat_logger.info("Use SQL to retrieval:{}".format(questions[-1]))
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
if ans: return ans
for p in prompt_config["parameters"]:
if p["key"] == "knowledge":
continue
if p["key"] not in kwargs and not p["optional"]:
raise KeyError("Miss parameter: " + p["key"])
if p["key"] not in kwargs:
prompt_config["system"] = prompt_config["system"].replace(
"{%s}" % p["key"], " ")
for _ in range(len(questions) // 2):
questions.append(questions[-1])
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
else:
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight, top=1024, aggs=False)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
chat_logger.info(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
if not knowledges and prompt_config.get("empty_response"):
return {
"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n".join(knowledges)
gen_conf = dialog.llm_setting
msg = [{"role": m["role"], "content": m["content"]}
for m in messages if m["role"] != "system"]
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(
gen_conf["max_tokens"],
max_tokens - used_token_count)
answer = chat_mdl.chat(
prompt_config["system"].format(
**kwargs), msg, gen_conf)
chat_logger.info("User: {}|Assistant: {}".format(
msg[-1]["content"], answer))
if knowledges and prompt_config.get("quote", True):
answer, idx = retrievaler.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs: recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
for c in kbinfos["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api")>=0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
return {"answer": answer, "reference": kbinfos}
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
sys_prompt = "你是一个DBA。你需要这对以下表的字段结构根据用户的问题列表写出最后一个问题对应的SQL。"
user_promt = """
表名:{}
数据库表字段说明如下:
{}
问题如下:
{}
请写出SQL, 且只要SQL不要有其他说明及文字。
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question
)
tried_times = 0
def get_table():
nonlocal sys_prompt, user_promt, question, tried_times
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
"temperature": 0.06})
print(user_promt, sql)
chat_logger.info(f"{question}”==>{user_promt} get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
sql = re.sub(r".*select ", "select ", sql.lower())
sql = re.sub(r" +", " ", sql)
sql = re.sub(r"([;]|```).*", "", sql)
if sql[:len("select ")] != "select ":
return None, None
if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
if sql[:len("select *")] != "select *":
sql = "select doc_id,docnm_kwd," + sql[6:]
else:
flds = []
for k in field_map.keys():
if k in forbidden_select_fields4resume:
continue
if len(flds) > 11:
break
flds.append(k)
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
print(f"{question}” get SQL(refined): {sql}")
chat_logger.info(f"{question}” get SQL(refined): {sql}")
tried_times += 1
return retrievaler.sql_retrieval(sql, format="json"), sql
tbl, sql = get_table()
if tbl is None:
return None
if tbl.get("error") and tried_times <= 2:
user_promt = """
表名:{}
数据库表字段说明如下:
{}
问题如下:
{}
你上一次给出的错误SQL如下
{}
后台报错如下:
{}
请纠正SQL中的错误再写一遍且只要SQL不要有其他说明及文字。
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question, sql, tbl["error"]
)
tbl, sql = get_table()
chat_logger.info("TRY it again: {}".format(sql))
chat_logger.info("GET table: {}".format(tbl))
print(tbl)
if tbl.get("error") or len(tbl["rows"]) == 0:
return None
docid_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "doc_id"])
docnm_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "docnm_kwd"])
clmn_idx = [ii for ii in range(
len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
# compose markdown table
clmns = "|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"],
tbl["columns"][i]["name"])) for i in clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
("|------|" if docid_idx and docid_idx else "")
rows = ["|" +
"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
"|" for r in tbl["rows"]]
if quota:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
else: rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
if not docid_idx or not docnm_idx:
chat_logger.warning("SQL missing field: " + sql)
return {
"answer": "\n".join([clmns, line, rows]),
"reference": {"chunks": [], "doc_aggs": []}
}
docid_idx = list(docid_idx)[0]
docnm_idx = list(docnm_idx)[0]
doc_aggs = {}
for r in tbl["rows"]:
if r[docid_idx] not in doc_aggs:
doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0}
doc_aggs[r[docid_idx]]["count"] += 1
return {
"answer": "\n".join([clmns, line, rows]),
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()]}
}

View File

@ -15,7 +15,7 @@
#
import re
from flask import request, session, redirect, url_for
from flask import request, session, redirect
from werkzeug.security import generate_password_hash, check_password_hash
from flask_login import login_required, current_user, login_user, logout_user

View File

@ -728,15 +728,6 @@ class Dialog(DataBaseModel):
db_table = "dialog"
# class DialogKb(DataBaseModel):
# dialog_id = CharField(max_length=32, null=False, index=True)
# kb_id = CharField(max_length=32, null=False)
#
# class Meta:
# db_table = "dialog_kb"
# primary_key = CompositeKey('dialog_id', 'kb_id')
class Conversation(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
dialog_id = CharField(max_length=32, null=False, index=True)
@ -748,13 +739,26 @@ class Conversation(DataBaseModel):
db_table = "conversation"
"""
class APIToken(DataBaseModel):
tenant_id = CharField(max_length=32, null=False)
token = CharField(max_length=255, null=False)
dialog_id = CharField(max_length=32, null=False, index=True)
class Meta:
db_table = 't_pipeline_component_meta'
indexes = (
(('f_model_id', 'f_model_version', 'f_role', 'f_party_id', 'f_component_name'), True),
)
db_table = "api_token"
primary_key = CompositeKey('tenant_id', 'token')
"""
class API4Conversation(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
dialog_id = CharField(max_length=32, null=False, index=True)
user_id = CharField(max_length=255, null=False, help_text="user_id")
message = JSONField(null=True)
reference = JSONField(null=True, default=[])
tokens = IntegerField(default=0)
duration = FloatField(default=0)
round = IntegerField(default=0)
thumb_up = IntegerField(default=0)
class Meta:
db_table = "api_4_conversation"

View File

@ -0,0 +1,66 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from datetime import datetime
import peewee
from api.db.db_models import DB, API4Conversation, APIToken, Dialog
from api.db.services.common_service import CommonService
from api.utils import current_timestamp, datetime_format
class APITokenService(CommonService):
model = APIToken
@classmethod
@DB.connection_context()
def used(cls, token):
return cls.model.update({
"update_time": current_timestamp(),
"update_date": datetime_format(datetime.now()),
}).where(
cls.model.token == token
)
class API4ConversationService(CommonService):
model = API4Conversation
@classmethod
@DB.connection_context()
def append_message(cls, id, conversation):
cls.model.update_by_id(id, conversation)
return cls.model.update(round=cls.model.round + 1).where(id=id).execute()
@classmethod
@DB.connection_context()
def stats(cls, tenant_id, from_date, to_date):
return cls.model.select(
cls.model.create_date.truncate("day").alias("dt"),
peewee.fn.COUNT(
cls.model.id).alias("pv"),
peewee.fn.COUNT(
cls.model.user_id.distinct()).alias("uv"),
peewee.fn.SUM(
cls.model.tokens).alias("tokens"),
peewee.fn.SUM(
cls.model.duration).alias("duration"),
peewee.fn.AVG(
cls.model.round).alias("round"),
peewee.fn.SUM(
cls.model.thumb_up).alias("thumb_up")
).join(Dialog, on=(cls.model.dialog_id == Dialog.id & Dialog.tenant_id == tenant_id)).where(
cls.model.create_date >= from_date,
cls.model.create_date <= to_date
).group_by(cls.model.create_date.truncate("day")).dicts()

View File

@ -13,8 +13,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from api.db import LLMType
from api.db.db_models import Dialog, Conversation
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.settings import chat_logger, retrievaler
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp.search import index_name
from rag.utils import rmSpace, num_tokens_from_string, encoder
class DialogService(CommonService):
@ -23,3 +32,247 @@ class DialogService(CommonService):
class ConversationService(CommonService):
model = Conversation
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg:
tks_cnts.append(
{"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts:
total += m["count"]
return total
c = count()
if c < max_length:
return c, msg
msg_ = [m for m in msg[:-1] if m["role"] == "system"]
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length:
return c, msg
ll = num_tokens_from_string(msg_[0].content)
l = num_tokens_from_string(msg_[-1].content)
if ll / (ll + l) > 0.8:
m = msg_[0].content
m = encoder.decode(encoder.encode(m)[:max_length - l])
msg[0].content = m
return max_length, msg
m = msg_[1].content
m = encoder.decode(encoder.encode(m)[:max_length - l])
msg[1].content = m
return max_length, msg
def chat(dialog, messages, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
llm = LLMService.query(llm_name=dialog.llm_id)
if not llm:
llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=dialog.llm_id)
if not llm:
raise LookupError("LLM(%s) not found" % dialog.llm_id)
max_tokens = 1024
else: max_tokens = llm[0].max_tokens
questions = [m["content"] for m in messages if m["role"] == "user"]
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
prompt_config = dialog.prompt_config
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
# try to use sql if field mapping is good to go
if field_map:
chat_logger.info("Use SQL to retrieval:{}".format(questions[-1]))
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
if ans: return ans
for p in prompt_config["parameters"]:
if p["key"] == "knowledge":
continue
if p["key"] not in kwargs and not p["optional"]:
raise KeyError("Miss parameter: " + p["key"])
if p["key"] not in kwargs:
prompt_config["system"] = prompt_config["system"].replace(
"{%s}" % p["key"], " ")
for _ in range(len(questions) // 2):
questions.append(questions[-1])
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
else:
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight, top=1024, aggs=False)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
chat_logger.info(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
if not knowledges and prompt_config.get("empty_response"):
return {
"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n".join(knowledges)
gen_conf = dialog.llm_setting
msg = [{"role": m["role"], "content": m["content"]}
for m in messages if m["role"] != "system"]
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(
gen_conf["max_tokens"],
max_tokens - used_token_count)
answer = chat_mdl.chat(
prompt_config["system"].format(
**kwargs), msg, gen_conf)
chat_logger.info("User: {}|Assistant: {}".format(
msg[-1]["content"], answer))
if knowledges and prompt_config.get("quote", True):
answer, idx = retrievaler.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs: recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
for c in kbinfos["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api")>=0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
return {"answer": answer, "reference": kbinfos}
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
sys_prompt = "你是一个DBA。你需要这对以下表的字段结构根据用户的问题列表写出最后一个问题对应的SQL。"
user_promt = """
表名:{}
数据库表字段说明如下:
{}
问题如下:
{}
请写出SQL, 且只要SQL不要有其他说明及文字。
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question
)
tried_times = 0
def get_table():
nonlocal sys_prompt, user_promt, question, tried_times
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
"temperature": 0.06})
print(user_promt, sql)
chat_logger.info(f"{question}”==>{user_promt} get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
sql = re.sub(r".*select ", "select ", sql.lower())
sql = re.sub(r" +", " ", sql)
sql = re.sub(r"([;]|```).*", "", sql)
if sql[:len("select ")] != "select ":
return None, None
if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
if sql[:len("select *")] != "select *":
sql = "select doc_id,docnm_kwd," + sql[6:]
else:
flds = []
for k in field_map.keys():
if k in forbidden_select_fields4resume:
continue
if len(flds) > 11:
break
flds.append(k)
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
print(f"{question}” get SQL(refined): {sql}")
chat_logger.info(f"{question}” get SQL(refined): {sql}")
tried_times += 1
return retrievaler.sql_retrieval(sql, format="json"), sql
tbl, sql = get_table()
if tbl is None:
return None
if tbl.get("error") and tried_times <= 2:
user_promt = """
表名:{}
数据库表字段说明如下:
{}
问题如下:
{}
你上一次给出的错误SQL如下
{}
后台报错如下:
{}
请纠正SQL中的错误再写一遍且只要SQL不要有其他说明及文字。
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question, sql, tbl["error"]
)
tbl, sql = get_table()
chat_logger.info("TRY it again: {}".format(sql))
chat_logger.info("GET table: {}".format(tbl))
print(tbl)
if tbl.get("error") or len(tbl["rows"]) == 0:
return None
docid_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "doc_id"])
docnm_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "docnm_kwd"])
clmn_idx = [ii for ii in range(
len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
# compose markdown table
clmns = "|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"],
tbl["columns"][i]["name"])) for i in clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
("|------|" if docid_idx and docid_idx else "")
rows = ["|" +
"|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
"|" for r in tbl["rows"]]
if quota:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
else: rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
if not docid_idx or not docnm_idx:
chat_logger.warning("SQL missing field: " + sql)
return {
"answer": "\n".join([clmns, line, rows]),
"reference": {"chunks": [], "doc_aggs": []}
}
docid_idx = list(docid_idx)[0]
docnm_idx = list(docnm_idx)[0]
doc_aggs = {}
for r in tbl["rows"]:
if r[docid_idx] not in doc_aggs:
doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0}
doc_aggs[r[docid_idx]]["count"] += 1
return {
"answer": "\n".join([clmns, line, rows]),
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()]}
}

View File

@ -15,7 +15,7 @@
#
from peewee import Expression
from api.db import TenantPermission, FileType, TaskStatus
from api.db import FileType, TaskStatus
from api.db.db_models import DB, Knowledgebase, Tenant
from api.db.db_models import Document
from api.db.services.common_service import CommonService