mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
@ -1,8 +1,11 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import json
|
||||
import re
|
||||
from elasticsearch_dsl import Q, Search, A
|
||||
from typing import List, Optional, Tuple, Dict, Union
|
||||
from dataclasses import dataclass
|
||||
|
||||
from rag.settings import es_logger
|
||||
from rag.utils import rmSpace
|
||||
from rag.nlp import huqie, query
|
||||
import numpy as np
|
||||
@ -34,30 +37,30 @@ class Dealer:
|
||||
group_docs: List[List] = None
|
||||
|
||||
def _vector(self, txt, sim=0.8, topk=10):
|
||||
qv = self.emb_mdl.encode_queries(txt)
|
||||
return {
|
||||
"field": "q_vec",
|
||||
"field": "q_%d_vec"%len(qv),
|
||||
"k": topk,
|
||||
"similarity": sim,
|
||||
"num_candidates": 1000,
|
||||
"query_vector": self.emb_mdl.encode_queries(txt)
|
||||
"query_vector": qv
|
||||
}
|
||||
|
||||
def search(self, req, idxnm, tks_num=3):
|
||||
keywords = []
|
||||
qst = req.get("question", "")
|
||||
|
||||
bqry, keywords = self.qryr.question(qst)
|
||||
if req.get("kb_ids"):
|
||||
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
|
||||
bqry.filter.append(Q("exists", field="q_tks"))
|
||||
if req.get("doc_ids"):
|
||||
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
|
||||
bqry.boost = 0.05
|
||||
print(bqry)
|
||||
|
||||
s = Search()
|
||||
pg = int(req.get("page", 1)) - 1
|
||||
ps = int(req.get("size", 1000))
|
||||
src = req.get("field", ["docnm_kwd", "content_ltks", "kb_id",
|
||||
"image_id", "doc_id", "q_vec"])
|
||||
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id","img_id",
|
||||
"image_id", "doc_id", "q_512_vec", "q_768_vec",
|
||||
"q_1024_vec", "q_1536_vec"])
|
||||
|
||||
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
|
||||
s = s.highlight("content_ltks")
|
||||
@ -66,22 +69,24 @@ class Dealer:
|
||||
s = s.sort(
|
||||
{"create_time": {"order": "desc", "unmapped_type": "date"}})
|
||||
|
||||
s = s.highlight_options(
|
||||
fragment_size=120,
|
||||
number_of_fragments=5,
|
||||
boundary_scanner_locale="zh-CN",
|
||||
boundary_scanner="SENTENCE",
|
||||
boundary_chars=",./;:\\!(),。?:!……()——、"
|
||||
)
|
||||
if qst:
|
||||
s = s.highlight_options(
|
||||
fragment_size=120,
|
||||
number_of_fragments=5,
|
||||
boundary_scanner_locale="zh-CN",
|
||||
boundary_scanner="SENTENCE",
|
||||
boundary_chars=",./;:\\!(),。?:!……()——、"
|
||||
)
|
||||
s = s.to_dict()
|
||||
q_vec = []
|
||||
if req.get("vector"):
|
||||
s["knn"] = self._vector(qst, req.get("similarity", 0.4), ps)
|
||||
s["knn"]["filter"] = bqry.to_dict()
|
||||
del s["highlight"]
|
||||
if "highlight" in s: del s["highlight"]
|
||||
q_vec = s["knn"]["query_vector"]
|
||||
es_logger.info("【Q】: {}".format(json.dumps(s)))
|
||||
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
|
||||
print("TOTAL: ", self.es.getTotal(res))
|
||||
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
|
||||
if self.es.getTotal(res) == 0 and "knn" in s:
|
||||
bqry, _ = self.qryr.question(qst, min_match="10%")
|
||||
if req.get("kb_ids"):
|
||||
@ -109,8 +114,7 @@ class Dealer:
|
||||
query_vector=q_vec,
|
||||
aggregation=aggs,
|
||||
highlight=self.getHighlight(res),
|
||||
field=self.getFields(res, ["docnm_kwd", "content_ltks",
|
||||
"kb_id", "image_id", "doc_id", "q_vec"]),
|
||||
field=self.getFields(res, src),
|
||||
keywords=list(kwds)
|
||||
)
|
||||
|
||||
@ -237,14 +241,4 @@ class Dealer:
|
||||
return sim
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from util import es_conn
|
||||
SE = Dealer(es_conn.HuEs("infiniflow"))
|
||||
qs = [
|
||||
"胡凯",
|
||||
""
|
||||
]
|
||||
for q in qs:
|
||||
print(">>>>>>>>>>>>>>>>>>>>", q)
|
||||
print(SE.search(
|
||||
{"question": q, "kb_ids": "64f072a75f3b97c865718c4a"}, "infiniflow_*"))
|
||||
|
||||
|
||||
Reference in New Issue
Block a user