mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Feat: add foundational support for RAPTOR dataset pipeline logs (#10277)
### What problem does this PR solve? Add foundational support for RAPTOR dataset pipeline logs. ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
@ -224,7 +224,7 @@ async def collect():
|
||||
canceled = False
|
||||
if msg.get("doc_id", "") == GRAPH_RAPTOR_FAKE_DOC_ID:
|
||||
task = msg
|
||||
if task["task_type"] == "graphrag" and msg.get("doc_ids", []):
|
||||
if task["task_type"] in ["graphrag", "raptor"] and msg.get("doc_ids", []):
|
||||
print(f"hack {msg['doc_ids']=}=",flush=True)
|
||||
task = TaskService.get_task(msg["id"], msg["doc_ids"])
|
||||
task["doc_ids"] = msg["doc_ids"]
|
||||
@ -636,6 +636,52 @@ async def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
|
||||
return res, tk_count
|
||||
|
||||
|
||||
@timeout(3600)
|
||||
async def run_raptor_for_kb(row, chat_mdl, embd_mdl, vector_size, callback=None, doc_ids=[]):
|
||||
fake_doc_id = GRAPH_RAPTOR_FAKE_DOC_ID
|
||||
|
||||
chunks = []
|
||||
vctr_nm = "q_%d_vec"%vector_size
|
||||
for doc_id in doc_ids:
|
||||
for d in settings.retrievaler.chunk_list(doc_id, row["tenant_id"], [str(row["kb_id"])],
|
||||
fields=["content_with_weight", vctr_nm],
|
||||
sort_by_position=True):
|
||||
chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
|
||||
|
||||
raptor = Raptor(
|
||||
row["parser_config"]["raptor"].get("max_cluster", 64),
|
||||
chat_mdl,
|
||||
embd_mdl,
|
||||
row["parser_config"]["raptor"]["prompt"],
|
||||
row["parser_config"]["raptor"]["max_token"],
|
||||
row["parser_config"]["raptor"]["threshold"]
|
||||
)
|
||||
original_length = len(chunks)
|
||||
chunks = await raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
|
||||
doc = {
|
||||
"doc_id": fake_doc_id,
|
||||
"kb_id": [str(row["kb_id"])],
|
||||
"docnm_kwd": row["name"],
|
||||
"title_tks": rag_tokenizer.tokenize(row["name"])
|
||||
}
|
||||
if row["pagerank"]:
|
||||
doc[PAGERANK_FLD] = int(row["pagerank"])
|
||||
res = []
|
||||
tk_count = 0
|
||||
for content, vctr in chunks[original_length:]:
|
||||
d = copy.deepcopy(doc)
|
||||
d["id"] = xxhash.xxh64((content + str(fake_doc_id)).encode("utf-8")).hexdigest()
|
||||
d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
|
||||
d["create_timestamp_flt"] = datetime.now().timestamp()
|
||||
d[vctr_nm] = vctr.tolist()
|
||||
d["content_with_weight"] = content
|
||||
d["content_ltks"] = rag_tokenizer.tokenize(content)
|
||||
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
||||
res.append(d)
|
||||
tk_count += num_tokens_from_string(content)
|
||||
return res, tk_count
|
||||
|
||||
|
||||
async def delete_image(kb_id, chunk_id):
|
||||
try:
|
||||
async with minio_limiter:
|
||||
@ -731,7 +777,15 @@ async def do_handle_task(task):
|
||||
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
|
||||
# run RAPTOR
|
||||
async with kg_limiter:
|
||||
chunks, token_count = await run_raptor(task, chat_model, embedding_model, vector_size, progress_callback)
|
||||
# chunks, token_count = await run_raptor(task, chat_model, embedding_model, vector_size, progress_callback)
|
||||
chunks, token_count = await run_raptor_for_kb(
|
||||
row=task,
|
||||
chat_mdl=chat_model,
|
||||
embd_mdl=embedding_model,
|
||||
vector_size=vector_size,
|
||||
callback=progress_callback,
|
||||
doc_ids=task.get("doc_ids", []),
|
||||
)
|
||||
# Either using graphrag or Standard chunking methods
|
||||
elif task_type == "graphrag":
|
||||
if not task_parser_config.get("graphrag", {}).get("use_graphrag", False):
|
||||
@ -834,7 +888,7 @@ async def handle_task():
|
||||
logging.exception(f"handle_task got exception for task {json.dumps(task)}")
|
||||
finally:
|
||||
task_document_ids = []
|
||||
if task_type in ["graphrag"]:
|
||||
if task_type in ["graphrag", "raptor"]:
|
||||
task_document_ids = task["doc_ids"]
|
||||
if task["doc_id"] != CANVAS_DEBUG_DOC_ID:
|
||||
PipelineOperationLogService.record_pipeline_operation(document_id=task["doc_id"], pipeline_id=task.get("dataflow_id", "") or "", task_type=pipeline_task_type, fake_document_ids=task_document_ids)
|
||||
|
||||
Reference in New Issue
Block a user