Feat: embedded search (#9501)

### What problem does this PR solve?

Add embedded search functionality.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
This commit is contained in:
Yongteng Lei
2025-08-18 12:05:11 +08:00
committed by GitHub
parent c8bbf7452d
commit ba11312766
3 changed files with 278 additions and 34 deletions

View File

@ -18,7 +18,9 @@ import re
import time
import tiktoken
from flask import Response, jsonify, request
import trio
from agent.canvas import Canvas
from api import settings
from api.db import LLMType, StatusEnum
from api.db.db_models import APIToken
from api.db.services.api_service import API4ConversationService
@ -29,9 +31,15 @@ from api.db.services.conversation_service import completion as rag_completion
from api.db.services.dialog_service import DialogService, ask, chat
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService
from api.db.services.user_service import UserTenantService
from api.utils import get_uuid
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_result, token_required, validate_request
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, get_result, server_error_response, token_required, validate_request
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.tag import label_question
from rag.prompts import chunks_format
from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import cross_languages, keyword_extraction
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
@ -855,3 +863,215 @@ def begin_inputs(agent_id):
"prologue": canvas.get_prologue()
}
)
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
@validate_request("question", "kb_ids")
def ask_about_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
req = request.json
uid = objs[0].tenant_id
def stream():
nonlocal req, uid
try:
for ans in ask(req["question"], req["kb_ids"], uid):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(stream(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
@manager.route("/searchbots/retrieval_test", methods=['POST']) # noqa: F821
@validate_request("kb_id", "question")
def retrieval_test_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
req = request.json
page = int(req.get("page", 1))
size = int(req.get("size", 30))
question = req["question"]
kb_ids = req["kb_id"]
if isinstance(kb_ids, str):
kb_ids = [kb_ids]
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))
langs = req.get("cross_languages", [])
tenant_ids = []
tenant_id = objs[0].tenant_id
if not tenant_id:
return get_error_data_result(message="permission denined.")
try:
tenants = UserTenantService.query(user_id=tenant_id)
for kb_id in kb_ids:
for tenant in tenants:
if KnowledgebaseService.query(
tenant_id=tenant.tenant_id, id=kb_id):
tenant_ids.append(tenant.tenant_id)
break
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(message="Knowledgebase not found!")
if langs:
question = cross_languages(kb.tenant_id, None, question, langs)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
labels = label_question(question, [kb])
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
rank_feature=labels
)
if use_kg:
ck = settings.kg_retrievaler.retrieval(question,
tenant_ids,
kb_ids,
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
for c in ranks["chunks"]:
c.pop("vector", None)
ranks["labels"] = labels
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
code=settings.RetCode.DATA_ERROR)
return server_error_response(e)
@manager.route("/searchbots/related_questions", methods=["POST"]) # noqa: F821
@validate_request("question")
def related_questions_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
req = request.json
tenant_id = objs[0].tenant_id
if not tenant_id:
return get_error_data_result(message="permission denined.")
question = req["question"]
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
prompt = load_prompt("related_question")
ans = chat_mdl.chat(
prompt,
[
{
"role": "user",
"content": f"""
Keywords: {question}
Related search terms:
""",
}
],
{"temperature": 0.9},
)
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
@manager.route("/searchbots/detail", methods=["GET"]) # noqa: F821
def detail_share_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
search_id = request.args["search_id"]
tenant_id = objs[0].tenant_id
if not tenant_id:
return get_error_data_result(message="permission denined.")
try:
tenants = UserTenantService.query(user_id=tenant_id)
for tenant in tenants:
if SearchService.query(tenant_id=tenant.tenant_id, id=search_id):
break
else:
return get_json_result(data=False, message="Has no permission for this operation.", code=settings.RetCode.OPERATING_ERROR)
search = SearchService.get_detail(search_id)
if not search:
return get_error_data_result(message="Can't find this Search App!")
return get_json_result(data=search)
except Exception as e:
return server_error_response(e)
@manager.route("/searchbots/mindmap", methods=["POST"]) # noqa: F821
@validate_request("question", "kb_ids")
def mindmap():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
tenant_id = objs[0].tenant_id
req = request.json
kb_ids = req["kb_ids"]
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(message="Knowledgebase not found!")
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
question = req["question"]
ranks = settings.retrievaler.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, 1, 12, 0.3, 0.3, aggs=False, rank_feature=label_question(question, [kb]))
mindmap = MindMapExtractor(chat_mdl)
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
mind_map = mind_map.output
if "error" in mind_map:
return server_error_response(Exception(mind_map["error"]))
return get_json_result(data=mind_map)