Feat: embedded search (#9501)

### What problem does this PR solve?

Add embedded search functionality.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
This commit is contained in:
Yongteng Lei
2025-08-18 12:05:11 +08:00
committed by GitHub
parent c8bbf7452d
commit ba11312766
3 changed files with 278 additions and 34 deletions

View File

@ -34,6 +34,7 @@ from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.tag import label_question
from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import chunks_format
@ -389,39 +390,7 @@ def related_questions():
req = request.json
question = req["question"]
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
prompt = """
Role: You are an AI language model assistant tasked with generating 5-10 related questions based on a users original query. These questions should help expand the search query scope and improve search relevance.
Instructions:
Input: You are provided with a users question.
Output: Generate 5-10 alternative questions that are related to the original user question. These alternatives should help retrieve a broader range of relevant documents from a vector database.
Context: Focus on rephrasing the original question in different ways, making sure the alternative questions are diverse but still connected to the topic of the original query. Do not create overly obscure, irrelevant, or unrelated questions.
Fallback: If you cannot generate any relevant alternatives, do not return any questions.
Guidance:
1. Each alternative should be unique but still relevant to the original query.
2. Keep the phrasing clear, concise, and easy to understand.
3. Avoid overly technical jargon or specialized terms unless directly relevant.
4. Ensure that each question contributes towards improving search results by broadening the search angle, not narrowing it.
Example:
Original Question: What are the benefits of electric vehicles?
Alternative Questions:
1. How do electric vehicles impact the environment?
2. What are the advantages of owning an electric car?
3. What is the cost-effectiveness of electric vehicles?
4. How do electric vehicles compare to traditional cars in terms of fuel efficiency?
5. What are the environmental benefits of switching to electric cars?
6. How do electric vehicles help reduce carbon emissions?
7. Why are electric vehicles becoming more popular?
8. What are the long-term savings of using electric vehicles?
9. How do electric vehicles contribute to sustainability?
10. What are the key benefits of electric vehicles for consumers?
Reason:
Rephrasing the original query into multiple alternative questions helps the user explore different aspects of their search topic, improving the quality of search results.
These questions guide the search engine to provide a more comprehensive set of relevant documents.
"""
prompt = load_prompt("related_question")
ans = chat_mdl.chat(
prompt,
[

View File

@ -18,7 +18,9 @@ import re
import time
import tiktoken
from flask import Response, jsonify, request
import trio
from agent.canvas import Canvas
from api import settings
from api.db import LLMType, StatusEnum
from api.db.db_models import APIToken
from api.db.services.api_service import API4ConversationService
@ -29,9 +31,15 @@ from api.db.services.conversation_service import completion as rag_completion
from api.db.services.dialog_service import DialogService, ask, chat
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService
from api.db.services.user_service import UserTenantService
from api.utils import get_uuid
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_result, token_required, validate_request
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, get_result, server_error_response, token_required, validate_request
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.tag import label_question
from rag.prompts import chunks_format
from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import cross_languages, keyword_extraction
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
@ -855,3 +863,215 @@ def begin_inputs(agent_id):
"prologue": canvas.get_prologue()
}
)
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
@validate_request("question", "kb_ids")
def ask_about_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
req = request.json
uid = objs[0].tenant_id
def stream():
nonlocal req, uid
try:
for ans in ask(req["question"], req["kb_ids"], uid):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(stream(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
@manager.route("/searchbots/retrieval_test", methods=['POST']) # noqa: F821
@validate_request("kb_id", "question")
def retrieval_test_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
req = request.json
page = int(req.get("page", 1))
size = int(req.get("size", 30))
question = req["question"]
kb_ids = req["kb_id"]
if isinstance(kb_ids, str):
kb_ids = [kb_ids]
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))
langs = req.get("cross_languages", [])
tenant_ids = []
tenant_id = objs[0].tenant_id
if not tenant_id:
return get_error_data_result(message="permission denined.")
try:
tenants = UserTenantService.query(user_id=tenant_id)
for kb_id in kb_ids:
for tenant in tenants:
if KnowledgebaseService.query(
tenant_id=tenant.tenant_id, id=kb_id):
tenant_ids.append(tenant.tenant_id)
break
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(message="Knowledgebase not found!")
if langs:
question = cross_languages(kb.tenant_id, None, question, langs)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
labels = label_question(question, [kb])
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
rank_feature=labels
)
if use_kg:
ck = settings.kg_retrievaler.retrieval(question,
tenant_ids,
kb_ids,
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
for c in ranks["chunks"]:
c.pop("vector", None)
ranks["labels"] = labels
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
code=settings.RetCode.DATA_ERROR)
return server_error_response(e)
@manager.route("/searchbots/related_questions", methods=["POST"]) # noqa: F821
@validate_request("question")
def related_questions_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
req = request.json
tenant_id = objs[0].tenant_id
if not tenant_id:
return get_error_data_result(message="permission denined.")
question = req["question"]
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
prompt = load_prompt("related_question")
ans = chat_mdl.chat(
prompt,
[
{
"role": "user",
"content": f"""
Keywords: {question}
Related search terms:
""",
}
],
{"temperature": 0.9},
)
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
@manager.route("/searchbots/detail", methods=["GET"]) # noqa: F821
def detail_share_embedded():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
search_id = request.args["search_id"]
tenant_id = objs[0].tenant_id
if not tenant_id:
return get_error_data_result(message="permission denined.")
try:
tenants = UserTenantService.query(user_id=tenant_id)
for tenant in tenants:
if SearchService.query(tenant_id=tenant.tenant_id, id=search_id):
break
else:
return get_json_result(data=False, message="Has no permission for this operation.", code=settings.RetCode.OPERATING_ERROR)
search = SearchService.get_detail(search_id)
if not search:
return get_error_data_result(message="Can't find this Search App!")
return get_json_result(data=search)
except Exception as e:
return server_error_response(e)
@manager.route("/searchbots/mindmap", methods=["POST"]) # noqa: F821
@validate_request("question", "kb_ids")
def mindmap():
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
tenant_id = objs[0].tenant_id
req = request.json
kb_ids = req["kb_ids"]
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(message="Knowledgebase not found!")
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
question = req["question"]
ranks = settings.retrievaler.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, 1, 12, 0.3, 0.3, aggs=False, rank_feature=label_question(question, [kb]))
mindmap = MindMapExtractor(chat_mdl)
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
mind_map = mind_map.output
if "error" in mind_map:
return server_error_response(Exception(mind_map["error"]))
return get_json_result(data=mind_map)