Fix: incorrect retrieval total count with pagination enabled (#11400)

### What problem does this PR solve?

Incorrect retrieval total count with pagination enabled.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
Yongteng Lei
2025-11-20 15:35:09 +08:00
committed by GitHub
parent 69578ebfce
commit b846a0f547

View File

@ -355,75 +355,102 @@ class Dealer:
rag_tokenizer.tokenize(ans).split(),
rag_tokenizer.tokenize(inst).split())
def retrieval(self, question, embd_mdl, tenant_ids, kb_ids, page, page_size, similarity_threshold=0.2,
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True,
rerank_mdl=None, highlight=False,
rank_feature: dict | None = {PAGERANK_FLD: 10}):
def retrieval(
self,
question,
embd_mdl,
tenant_ids,
kb_ids,
page,
page_size,
similarity_threshold=0.2,
vector_similarity_weight=0.3,
top=1024,
doc_ids=None,
aggs=True,
rerank_mdl=None,
highlight=False,
rank_feature: dict | None = {PAGERANK_FLD: 10},
):
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
if not question:
return ranks
# Ensure RERANK_LIMIT is multiple of page_size
RERANK_LIMIT = math.ceil(64/page_size) * page_size if page_size>1 else 1
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "page": math.ceil(page_size*page/RERANK_LIMIT), "size": RERANK_LIMIT,
"question": question, "vector": True, "topk": top,
"similarity": similarity_threshold,
"available_int": 1}
RERANK_LIMIT = math.ceil(64 / page_size) * page_size if page_size > 1 else 1
req = {
"kb_ids": kb_ids,
"doc_ids": doc_ids,
"page": math.ceil(page_size * page / RERANK_LIMIT),
"size": RERANK_LIMIT,
"question": question,
"vector": True,
"topk": top,
"similarity": similarity_threshold,
"available_int": 1,
}
if isinstance(tenant_ids, str):
tenant_ids = tenant_ids.split(",")
sres = self.search(req, [index_name(tid) for tid in tenant_ids],
kb_ids, embd_mdl, highlight, rank_feature=rank_feature)
sres = self.search(req, [index_name(tid) for tid in tenant_ids], kb_ids, embd_mdl, highlight, rank_feature=rank_feature)
if rerank_mdl and sres.total > 0:
sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
sres, question, 1 - vector_similarity_weight,
vector_similarity_weight,
rank_feature=rank_feature)
sim, tsim, vsim = self.rerank_by_model(
rerank_mdl,
sres,
question,
1 - vector_similarity_weight,
vector_similarity_weight,
rank_feature=rank_feature,
)
else:
lower_case_doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
if lower_case_doc_engine in ["elasticsearch","opensearch"]:
lower_case_doc_engine = os.getenv("DOC_ENGINE", "elasticsearch")
if lower_case_doc_engine in ["elasticsearch", "opensearch"]:
# ElasticSearch doesn't normalize each way score before fusion.
sim, tsim, vsim = self.rerank(
sres, question, 1 - vector_similarity_weight, vector_similarity_weight,
rank_feature=rank_feature)
sres,
question,
1 - vector_similarity_weight,
vector_similarity_weight,
rank_feature=rank_feature,
)
else:
# Don't need rerank here since Infinity normalizes each way score before fusion.
sim = [sres.field[id].get("_score", 0.0) for id in sres.ids]
sim = [s if s is not None else 0. for s in sim]
sim = [s if s is not None else 0.0 for s in sim]
tsim = sim
vsim = sim
# Already paginated in search function
max_pages = RERANK_LIMIT // page_size
page_index = (page % max_pages) - 1
begin = max(page_index * page_size, 0)
sim = sim[begin : begin + page_size]
sim_np = np.array(sim, dtype=np.float64)
idx = np.argsort(sim_np * -1)
if sim_np.size == 0:
return ranks
sorted_idx = np.argsort(sim_np * -1)
valid_idx = [int(i) for i in sorted_idx if sim_np[i] >= similarity_threshold]
filtered_count = len(valid_idx)
ranks["total"] = int(filtered_count)
if filtered_count == 0:
return ranks
max_pages = max(RERANK_LIMIT // max(page_size, 1), 1)
page_index = (page - 1) % max_pages
begin = page_index * page_size
end = begin + page_size
page_idx = valid_idx[begin:end]
dim = len(sres.query_vector)
vector_column = f"q_{dim}_vec"
zero_vector = [0.0] * dim
filtered_count = (sim_np >= similarity_threshold).sum()
ranks["total"] = int(filtered_count) # Convert from np.int64 to Python int otherwise JSON serializable error
for i in idx:
if np.float64(sim[i]) < similarity_threshold:
break
for i in page_idx:
id = sres.ids[i]
chunk = sres.field[id]
dnm = chunk.get("docnm_kwd", "")
did = chunk.get("doc_id", "")
if len(ranks["chunks"]) >= page_size:
if aggs:
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
ranks["doc_aggs"][dnm]["count"] += 1
continue
break
position_int = chunk.get("position_int", [])
d = {
"chunk_id": id,
@ -434,12 +461,12 @@ class Dealer:
"kb_id": chunk["kb_id"],
"important_kwd": chunk.get("important_kwd", []),
"image_id": chunk.get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i],
"similarity": float(sim_np[i]),
"vector_similarity": float(vsim[i]),
"term_similarity": float(tsim[i]),
"vector": chunk.get(vector_column, zero_vector),
"positions": position_int,
"doc_type_kwd": chunk.get("doc_type_kwd", "")
"doc_type_kwd": chunk.get("doc_type_kwd", ""),
}
if highlight and sres.highlight:
if id in sres.highlight:
@ -447,15 +474,30 @@ class Dealer:
else:
d["highlight"] = d["content_with_weight"]
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
ranks["doc_aggs"][dnm]["count"] += 1
ranks["doc_aggs"] = [{"doc_name": k,
"doc_id": v["doc_id"],
"count": v["count"]} for k,
v in sorted(ranks["doc_aggs"].items(),
key=lambda x: x[1]["count"] * -1)]
ranks["chunks"] = ranks["chunks"][:page_size]
if aggs:
for i in valid_idx:
id = sres.ids[i]
chunk = sres.field[id]
dnm = chunk.get("docnm_kwd", "")
did = chunk.get("doc_id", "")
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
ranks["doc_aggs"][dnm]["count"] += 1
ranks["doc_aggs"] = [
{
"doc_name": k,
"doc_id": v["doc_id"],
"count": v["count"],
}
for k, v in sorted(
ranks["doc_aggs"].items(),
key=lambda x: x[1]["count"] * -1,
)
]
else:
ranks["doc_aggs"] = []
return ranks