From b6c1ca828e533aa55fd568dc77d1077d01649d7f Mon Sep 17 00:00:00 2001 From: Yongteng Lei Date: Mon, 25 Aug 2025 17:56:31 +0800 Subject: [PATCH] Refa: replace Chat Ollama implementation with LiteLLM (#9693) ### What problem does this PR solve? replace Chat Ollama implementation with LiteLLM. ### Type of change - [x] Refactoring --- rag/llm/__init__.py | 2 ++ rag/llm/chat_model.py | 70 +------------------------------------------ 2 files changed, 3 insertions(+), 69 deletions(-) diff --git a/rag/llm/__init__.py b/rag/llm/__init__.py index 58c8379cb..eccf3f7df 100644 --- a/rag/llm/__init__.py +++ b/rag/llm/__init__.py @@ -36,6 +36,7 @@ class SupportedLiteLLMProvider(StrEnum): Nvidia = "NVIDIA" TogetherAI = "TogetherAI" Anthropic = "Anthropic" + Ollama = "Ollama" FACTORY_DEFAULT_BASE_URL = { @@ -59,6 +60,7 @@ LITELLM_PROVIDER_PREFIX = { SupportedLiteLLMProvider.Nvidia: "nvidia_nim/", SupportedLiteLLMProvider.TogetherAI: "together_ai/", SupportedLiteLLMProvider.Anthropic: "", # don't need a prefix + SupportedLiteLLMProvider.Ollama: "ollama_chat/", } ChatModel = globals().get("ChatModel", {}) diff --git a/rag/llm/chat_model.py b/rag/llm/chat_model.py index 27c9a6c99..1948ee848 100644 --- a/rag/llm/chat_model.py +++ b/rag/llm/chat_model.py @@ -29,7 +29,6 @@ import json_repair import litellm import openai import requests -from ollama import Client from openai import OpenAI from openai.lib.azure import AzureOpenAI from strenum import StrEnum @@ -683,73 +682,6 @@ class ZhipuChat(Base): return super().chat_streamly_with_tools(system, history, gen_conf) -class OllamaChat(Base): - _FACTORY_NAME = "Ollama" - - def __init__(self, key, model_name, base_url=None, **kwargs): - super().__init__(key, model_name, base_url=base_url, **kwargs) - - self.client = Client(host=base_url) if not key or key == "x" else Client(host=base_url, headers={"Authorization": f"Bearer {key}"}) - self.model_name = model_name - self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1))) - - def _clean_conf(self, gen_conf): - options = {} - if "max_tokens" in gen_conf: - options["num_predict"] = gen_conf["max_tokens"] - for k in ["temperature", "top_p", "presence_penalty", "frequency_penalty"]: - if k not in gen_conf: - continue - options[k] = gen_conf[k] - return options - - def _chat(self, history, gen_conf={}, **kwargs): - # Calculate context size - ctx_size = self._calculate_dynamic_ctx(history) - - gen_conf["num_ctx"] = ctx_size - response = self.client.chat(model=self.model_name, messages=history, options=gen_conf, keep_alive=self.keep_alive) - ans = response["message"]["content"].strip() - token_count = response.get("eval_count", 0) + response.get("prompt_eval_count", 0) - return ans, token_count - - def chat_streamly(self, system, history, gen_conf={}, **kwargs): - if system: - history.insert(0, {"role": "system", "content": system}) - if "max_tokens" in gen_conf: - del gen_conf["max_tokens"] - try: - # Calculate context size - ctx_size = self._calculate_dynamic_ctx(history) - options = {"num_ctx": ctx_size} - if "temperature" in gen_conf: - options["temperature"] = gen_conf["temperature"] - if "max_tokens" in gen_conf: - options["num_predict"] = gen_conf["max_tokens"] - if "top_p" in gen_conf: - options["top_p"] = gen_conf["top_p"] - if "presence_penalty" in gen_conf: - options["presence_penalty"] = gen_conf["presence_penalty"] - if "frequency_penalty" in gen_conf: - options["frequency_penalty"] = gen_conf["frequency_penalty"] - - ans = "" - try: - response = self.client.chat(model=self.model_name, messages=history, stream=True, options=options, keep_alive=self.keep_alive) - for resp in response: - if resp["done"]: - token_count = resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0) - yield token_count - ans = resp["message"]["content"] - yield ans - except Exception as e: - yield ans + "\n**ERROR**: " + str(e) - yield 0 - except Exception as e: - yield "**ERROR**: " + str(e) - yield 0 - - class LocalAIChat(Base): _FACTORY_NAME = "LocalAI" @@ -1422,7 +1354,7 @@ class Ai302Chat(Base): class LiteLLMBase(ABC): - _FACTORY_NAME = ["Tongyi-Qianwen", "Bedrock", "Moonshot", "xAI", "DeepInfra", "Groq", "Cohere", "Gemini", "DeepSeek", "NVIDIA", "TogetherAI", "Anthropic"] + _FACTORY_NAME = ["Tongyi-Qianwen", "Bedrock", "Moonshot", "xAI", "DeepInfra", "Groq", "Cohere", "Gemini", "DeepSeek", "NVIDIA", "TogetherAI", "Anthropic", "Ollama"] def __init__(self, key, model_name, base_url=None, **kwargs): self.timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))