Fix: renrank_model and pdf_parser bugs | Update: session API (#2601)

### What problem does this PR solve?

Fix: renrank_model and pdf_parser bugs | Update: session API
#2575
#2559
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring

---------

Co-authored-by: liuhua <10215101452@stu.ecun.edu.cn>
This commit is contained in:
liuhua
2024-09-26 16:05:25 +08:00
committed by GitHub
parent f6bfe4d970
commit b68d349bd6
6 changed files with 68 additions and 41 deletions

View File

@ -26,9 +26,11 @@ from api.utils.file_utils import get_home_cache_dir
from rag.utils import num_tokens_from_string, truncate
import json
def sigmoid(x):
return 1 / (1 + np.exp(-x))
class Base(ABC):
def __init__(self, key, model_name):
pass
@ -59,16 +61,19 @@ class DefaultRerank(Base):
with DefaultRerank._model_lock:
if not DefaultRerank._model:
try:
DefaultRerank._model = FlagReranker(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)), use_fp16=torch.cuda.is_available())
DefaultRerank._model = FlagReranker(
os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
use_fp16=torch.cuda.is_available())
except Exception as e:
model_dir = snapshot_download(repo_id= model_name,
local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
model_dir = snapshot_download(repo_id=model_name,
local_dir=os.path.join(get_home_cache_dir(),
re.sub(r"^[a-zA-Z]+/", "", model_name)),
local_dir_use_symlinks=False)
DefaultRerank._model = FlagReranker(model_dir, use_fp16=torch.cuda.is_available())
self._model = DefaultRerank._model
def similarity(self, query: str, texts: list):
pairs = [(query,truncate(t, 2048)) for t in texts]
pairs = [(query, truncate(t, 2048)) for t in texts]
token_count = 0
for _, t in pairs:
token_count += num_tokens_from_string(t)
@ -77,8 +82,10 @@ class DefaultRerank(Base):
for i in range(0, len(pairs), batch_size):
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=2048)
scores = sigmoid(np.array(scores)).tolist()
if isinstance(scores, float): res.append(scores)
else: res.extend(scores)
if isinstance(scores, float):
res.append(scores)
else:
res.extend(scores)
return np.array(res), token_count
@ -101,7 +108,10 @@ class JinaRerank(Base):
"top_n": len(texts)
}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
return np.array([d["relevance_score"] for d in res["results"]]), res["usage"]["total_tokens"]
rank = np.zeros(len(texts), dtype=float)
for d in res["results"]:
rank[d["index"]] = d["relevance_score"]
return rank, res["usage"]["total_tokens"]
class YoudaoRerank(DefaultRerank):
@ -124,7 +134,7 @@ class YoudaoRerank(DefaultRerank):
"maidalun1020", "InfiniFlow"))
self._model = YoudaoRerank._model
def similarity(self, query: str, texts: list):
pairs = [(query, truncate(t, self._model.max_length)) for t in texts]
token_count = 0
@ -135,8 +145,10 @@ class YoudaoRerank(DefaultRerank):
for i in range(0, len(pairs), batch_size):
scores = self._model.compute_score(pairs[i:i + batch_size], max_length=self._model.max_length)
scores = sigmoid(np.array(scores)).tolist()
if isinstance(scores, float): res.append(scores)
else: res.extend(scores)
if isinstance(scores, float):
res.append(scores)
else:
res.extend(scores)
return np.array(res), token_count
@ -162,7 +174,10 @@ class XInferenceRerank(Base):
"documents": texts
}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
return np.array([d["relevance_score"] for d in res["results"]]), res["meta"]["tokens"]["input_tokens"]+res["meta"]["tokens"]["output_tokens"]
rank = np.zeros(len(texts), dtype=float)
for d in res["results"]:
rank[d["index"]] = d["relevance_score"]
return rank, res["meta"]["tokens"]["input_tokens"] + res["meta"]["tokens"]["output_tokens"]
class LocalAIRerank(Base):
@ -175,7 +190,7 @@ class LocalAIRerank(Base):
class NvidiaRerank(Base):
def __init__(
self, key, model_name, base_url="https://ai.api.nvidia.com/v1/retrieval/nvidia/"
self, key, model_name, base_url="https://ai.api.nvidia.com/v1/retrieval/nvidia/"
):
if not base_url:
base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/"
@ -208,9 +223,10 @@ class NvidiaRerank(Base):
"top_n": len(texts),
}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
rank = np.array([d["logit"] for d in res["rankings"]])
indexs = [d["index"] for d in res["rankings"]]
return rank[indexs], token_count
rank = np.zeros(len(texts), dtype=float)
for d in res["rankings"]:
rank[d["index"]] = d["logit"]
return rank, token_count
class LmStudioRerank(Base):
@ -247,9 +263,10 @@ class CoHereRerank(Base):
top_n=len(texts),
return_documents=False,
)
rank = np.array([d.relevance_score for d in res.results])
indexs = [d.index for d in res.results]
return rank[indexs], token_count
rank = np.zeros(len(texts), dtype=float)
for d in res.results:
rank[d.index] = d.relevance_score
return rank, token_count
class TogetherAIRerank(Base):
@ -262,7 +279,7 @@ class TogetherAIRerank(Base):
class SILICONFLOWRerank(Base):
def __init__(
self, key, model_name, base_url="https://api.siliconflow.cn/v1/rerank"
self, key, model_name, base_url="https://api.siliconflow.cn/v1/rerank"
):
if not base_url:
base_url = "https://api.siliconflow.cn/v1/rerank"
@ -287,10 +304,11 @@ class SILICONFLOWRerank(Base):
response = requests.post(
self.base_url, json=payload, headers=self.headers
).json()
rank = np.array([d["relevance_score"] for d in response["results"]])
indexs = [d["index"] for d in response["results"]]
rank = np.zeros(len(texts), dtype=float)
for d in response["results"]:
rank[d["index"]] = d["relevance_score"]
return (
rank[indexs],
rank,
response["meta"]["tokens"]["input_tokens"] + response["meta"]["tokens"]["output_tokens"],
)
@ -312,9 +330,10 @@ class BaiduYiyanRerank(Base):
documents=texts,
top_n=len(texts),
).body
rank = np.array([d["relevance_score"] for d in res["results"]])
indexs = [d["index"] for d in res["results"]]
return rank[indexs], res["usage"]["total_tokens"]
rank = np.zeros(len(texts), dtype=float)
for d in res["results"]:
rank[d["index"]] = d["relevance_score"]
return rank, res["usage"]["total_tokens"]
class VoyageRerank(Base):
@ -328,6 +347,7 @@ class VoyageRerank(Base):
res = self.client.rerank(
query=query, documents=texts, model=self.model_name, top_k=len(texts)
)
rank = np.array([r.relevance_score for r in res.results])
indexs = [r.index for r in res.results]
return rank[indexs], res.total_tokens
rank = np.zeros(len(texts), dtype=float)
for r in res.results:
rank[r.index] = r.relevance_score
return rank, res.total_tokens