add support for NVIDIA llm (#1645)

### What problem does this PR solve?

add support for NVIDIA llm
### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
黄腾
2024-07-23 10:43:09 +08:00
committed by GitHub
parent 95821f6fb6
commit b4a281eca1
8 changed files with 508 additions and 7 deletions

View File

@ -34,7 +34,8 @@ EmbeddingModel = {
"BAAI": DefaultEmbedding,
"Mistral": MistralEmbed,
"Bedrock": BedrockEmbed,
"Gemini":GeminiEmbed
"Gemini":GeminiEmbed,
"NVIDIA":NvidiaEmbed
}
@ -48,7 +49,8 @@ CvModel = {
"Moonshot": LocalCV,
'Gemini':GeminiCV,
'OpenRouter':OpenRouterCV,
"LocalAI":LocalAICV
"LocalAI":LocalAICV,
"NVIDIA":NvidiaCV
}
@ -71,7 +73,8 @@ ChatModel = {
"Bedrock": BedrockChat,
"Groq": GroqChat,
'OpenRouter':OpenRouterChat,
"StepFun":StepFunChat
"StepFun":StepFunChat,
"NVIDIA":NvidiaChat
}
@ -79,7 +82,8 @@ RerankModel = {
"BAAI": DefaultRerank,
"Jina": JinaRerank,
"Youdao": YoudaoRerank,
"Xinference": XInferenceRerank
"Xinference": XInferenceRerank,
"NVIDIA":NvidiaRerank
}

View File

@ -581,7 +581,6 @@ class MiniMaxChat(Base):
response = requests.request(
"POST", url=self.base_url, headers=headers, data=payload
)
print(response, flush=True)
response = response.json()
ans = response["choices"][0]["message"]["content"].strip()
if response["choices"][0]["finish_reason"] == "length":
@ -902,4 +901,79 @@ class StepFunChat(Base):
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1/chat/completions"):
if not base_url:
base_url = "https://api.stepfun.com/v1/chat/completions"
super().__init__(key, model_name, base_url)
super().__init__(key, model_name, base_url)
class NvidiaChat(Base):
def __init__(
self,
key,
model_name,
base_url="https://integrate.api.nvidia.com/v1/chat/completions",
):
if not base_url:
base_url = "https://integrate.api.nvidia.com/v1/chat/completions"
self.base_url = base_url
self.model_name = model_name
self.api_key = key
self.headers = {
"accept": "application/json",
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
payload = {"model": self.model_name, "messages": history, **gen_conf}
try:
response = requests.post(
url=self.base_url, headers=self.headers, json=payload
)
response = response.json()
ans = response["choices"][0]["message"]["content"].strip()
return ans, response["usage"]["total_tokens"]
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
total_tokens = 0
payload = {
"model": self.model_name,
"messages": history,
"stream": True,
**gen_conf,
}
try:
response = requests.post(
url=self.base_url,
headers=self.headers,
json=payload,
)
for resp in response.text.split("\n\n"):
if "choices" not in resp:
continue
resp = json.loads(resp[6:])
if "content" in resp["choices"][0]["delta"]:
text = resp["choices"][0]["delta"]["content"]
else:
continue
ans += text
if "usage" in resp:
total_tokens = resp["usage"]["total_tokens"]
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens

View File

@ -137,7 +137,6 @@ class Base(ABC):
]
class GptV4(Base):
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"):
if not base_url: base_url="https://api.openai.com/v1"
@ -619,3 +618,65 @@ class LocalCV(Base):
def describe(self, image, max_tokens=1024):
return "", 0
class NvidiaCV(Base):
def __init__(
self,
key,
model_name,
lang="Chinese",
base_url="https://ai.api.nvidia.com/v1/vlm",
):
if not base_url:
base_url = ("https://ai.api.nvidia.com/v1/vlm",)
self.lang = lang
factory, llm_name = model_name.split("/")
if factory != "liuhaotian":
self.base_url = os.path.join(base_url, factory, llm_name)
else:
self.base_url = os.path.join(
base_url, "community", llm_name.replace("-v1.6", "16")
)
self.key = key
def describe(self, image, max_tokens=1024):
b64 = self.image2base64(image)
response = requests.post(
url=self.base_url,
headers={
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {self.key}",
},
json={
"messages": self.prompt(b64),
"max_tokens": max_tokens,
},
)
response = response.json()
return (
response["choices"][0]["message"]["content"].strip(),
response["usage"]["total_tokens"],
)
def prompt(self, b64):
return [
{
"role": "user",
"content": (
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
if self.lang.lower() == "chinese"
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
)
+ f' <img src="data:image/jpeg;base64,{b64}"/>',
}
]
def chat_prompt(self, text, b64):
return [
{
"role": "user",
"content": text + f' <img src="data:image/jpeg;base64,{b64}"/>',
}
]

View File

@ -462,3 +462,41 @@ class GeminiEmbed(Base):
title="Embedding of single string")
token_count = num_tokens_from_string(text)
return np.array(result['embedding']),token_count
class NvidiaEmbed(Base):
def __init__(
self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
):
if not base_url:
base_url = "https://integrate.api.nvidia.com/v1/embeddings"
self.api_key = key
self.base_url = base_url
self.headers = {
"accept": "application/json",
"Content-Type": "application/json",
"authorization": f"Bearer {self.api_key}",
}
self.model_name = model_name
if model_name == "nvidia/embed-qa-4":
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
self.model_name = "NV-Embed-QA"
if model_name == "snowflake/arctic-embed-l":
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
def encode(self, texts: list, batch_size=None):
payload = {
"input": texts,
"input_type": "query",
"model": self.model_name,
"encoding_format": "float",
"truncate": "END",
}
res = requests.post(self.base_url, headers=self.headers, json=payload).json()
return (
np.array([d["embedding"] for d in res["data"]]),
res["usage"]["total_tokens"],
)
def encode_queries(self, text):
embds, cnt = self.encode([text])
return np.array(embds[0]), cnt

View File

@ -164,3 +164,41 @@ class LocalAIRerank(Base):
def similarity(self, query: str, texts: list):
raise NotImplementedError("The LocalAIRerank has not been implement")
class NvidiaRerank(Base):
def __init__(
self, key, model_name, base_url="https://ai.api.nvidia.com/v1/retrieval/nvidia/"
):
if not base_url:
base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/"
self.model_name = model_name
if self.model_name == "nvidia/nv-rerankqa-mistral-4b-v3":
self.base_url = os.path.join(
base_url, "nv-rerankqa-mistral-4b-v3", "reranking"
)
if self.model_name == "nvidia/rerank-qa-mistral-4b":
self.base_url = os.path.join(base_url, "reranking")
self.model_name = "nv-rerank-qa-mistral-4b:1"
self.headers = {
"accept": "application/json",
"Content-Type": "application/json",
"Authorization": f"Bearer {key}",
}
def similarity(self, query: str, texts: list):
token_count = num_tokens_from_string(query) + sum(
[num_tokens_from_string(t) for t in texts]
)
data = {
"model": self.model_name,
"query": {"text": query},
"passages": [{"text": text} for text in texts],
"truncate": "END",
"top_n": len(texts),
}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
return (np.array([d["logit"] for d in res["rankings"]]), token_count)