Feat: enhance Excel image extraction with vision-based descriptions (#12054)

### What problem does this PR solve?
issue:
[#11618](https://github.com/infiniflow/ragflow/issues/11618)
change:
enhance Excel image extraction with vision-based descriptions

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
buua436
2025-12-22 10:17:44 +08:00
committed by GitHub
parent 8dd2394e93
commit b49eb6826b
3 changed files with 126 additions and 6 deletions

View File

@ -18,6 +18,7 @@ from io import BytesIO
import pandas as pd
from openpyxl import Workbook, load_workbook
from PIL import Image
from rag.nlp import find_codec
@ -109,6 +110,52 @@ class RAGFlowExcelParser:
ws.cell(row=row_num, column=col_num, value=value)
return wb
@staticmethod
def _extract_images_from_worksheet(ws, sheetname=None):
"""
Extract images from a worksheet and enrich them with vision-based descriptions.
Returns: List[dict]
"""
images = getattr(ws, "_images", [])
if not images:
return []
raw_items = []
for img in images:
try:
img_bytes = img._data()
pil_img = Image.open(BytesIO(img_bytes)).convert("RGB")
anchor = img.anchor
if hasattr(anchor, "_from") and hasattr(anchor, "_to"):
r1, c1 = anchor._from.row + 1, anchor._from.col + 1
r2, c2 = anchor._to.row + 1, anchor._to.col + 1
if r1 == r2 and c1 == c2:
span = "single_cell"
else:
span = "multi_cell"
else:
r1, c1 = anchor._from.row + 1, anchor._from.col + 1
r2, c2 = r1, c1
span = "single_cell"
item = {
"sheet": sheetname or ws.title,
"image": pil_img,
"image_description": "",
"row_from": r1,
"col_from": c1,
"row_to": r2,
"col_to": c2,
"span_type": span,
}
raw_items.append(item)
except Exception:
continue
return raw_items
def html(self, fnm, chunk_rows=256):
from html import escape

View File

@ -55,6 +55,31 @@ def vision_figure_parser_docx_wrapper(sections, tbls, callback=None,**kwargs):
callback(0.8, f"Visual model error: {e}. Skipping figure parsing enhancement.")
return tbls
def vision_figure_parser_figure_xlsx_wrapper(images,callback=None, **kwargs):
tbls = []
if not images:
return []
try:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
callback(0.2, "Visual model detected. Attempting to enhance Excel image extraction...")
except Exception:
vision_model = None
if vision_model:
figures_data = [((
img["image"], # Image.Image
[img["image_description"]] # description list (must be list)
),
[
(0, 0, 0, 0, 0) # dummy position
]) for img in images]
try:
parser = VisionFigureParser(vision_model=vision_model, figures_data=figures_data, **kwargs)
callback(0.22, "Parsing images...")
boosted_figures = parser(callback=callback)
tbls.extend(boosted_figures)
except Exception as e:
callback(0.25, f"Excel visual model error: {e}. Skipping vision enhancement.")
return tbls
def vision_figure_parser_pdf_wrapper(tbls, callback=None, **kwargs):
if not tbls:

View File

@ -29,13 +29,14 @@ from collections import Counter
from dateutil.parser import parse as datetime_parse
from api.db.services.knowledgebase_service import KnowledgebaseService
from deepdoc.parser.figure_parser import vision_figure_parser_figure_xlsx_wrapper
from deepdoc.parser.utils import get_text
from rag.nlp import rag_tokenizer, tokenize
from rag.nlp import rag_tokenizer, tokenize, tokenize_table
from deepdoc.parser import ExcelParser
class Excel(ExcelParser):
def __call__(self, fnm, binary=None, from_page=0, to_page=10000000000, callback=None):
def __call__(self, fnm, binary=None, from_page=0, to_page=10000000000, callback=None, **kwargs):
if not binary:
wb = Excel._load_excel_to_workbook(fnm)
else:
@ -45,8 +46,23 @@ class Excel(ExcelParser):
total += len(list(wb[sheetname].rows))
res, fails, done = [], [], 0
rn = 0
flow_images = []
pending_cell_images = []
tables = []
for sheetname in wb.sheetnames:
ws = wb[sheetname]
images = Excel._extract_images_from_worksheet(ws,sheetname=sheetname)
if images:
image_descriptions = vision_figure_parser_figure_xlsx_wrapper(images=images, callback=callback, **kwargs)
if image_descriptions and len(image_descriptions) == len(images):
for i, bf in enumerate(image_descriptions):
images[i]["image_description"] = "\n".join(bf[0][1])
for img in images:
if (img["span_type"] == "single_cell"and img.get("image_description")):
pending_cell_images.append(img)
else:
flow_images.append(img)
try:
rows = list(ws.rows)
except Exception as e:
@ -75,9 +91,38 @@ class Excel(ExcelParser):
if len(data) == 0:
continue
df = pd.DataFrame(data, columns=headers)
for img in pending_cell_images:
excel_row = img["row_from"] - 1
excel_col = img["col_from"] - 1
df_row_idx = excel_row - header_rows
if df_row_idx < 0 or df_row_idx >= len(df):
flow_images.append(img)
continue
if excel_col < 0 or excel_col >= len(df.columns):
flow_images.append(img)
continue
col_name = df.columns[excel_col]
if not df.iloc[df_row_idx][col_name]:
df.iat[df_row_idx, excel_col] = img["image_description"]
res.append(df)
for img in flow_images:
tables.append(
(
(
img["image"], # Image.Image
[img["image_description"]] # description list (must be list)
),
[
(0, 0, 0, 0, 0) # dummy position
]
)
)
callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
return res
return res,tables
def _parse_headers(self, ws, rows):
if len(rows) == 0:
@ -320,11 +365,12 @@ def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese
Every row in table will be treated as a chunk.
"""
tbls = []
is_english = lang.lower() == "english"
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = Excel()
dfs = excel_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)
dfs,tbls = excel_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback, **kwargs)
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = get_text(filename, binary)
@ -419,7 +465,9 @@ def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese
continue
tokenize(d, "; ".join(row_txt), eng)
res.append(d)
if tbls:
doc = {"docnm_kwd": filename, "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))}
res.extend(tokenize_table(tbls, doc, is_english))
KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
callback(0.35, "")