mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-22 22:26:43 +08:00
Feat: enhance Excel image extraction with vision-based descriptions (#12054)
### What problem does this PR solve? issue: [#11618](https://github.com/infiniflow/ragflow/issues/11618) change: enhance Excel image extraction with vision-based descriptions ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
@ -18,6 +18,7 @@ from io import BytesIO
|
||||
|
||||
import pandas as pd
|
||||
from openpyxl import Workbook, load_workbook
|
||||
from PIL import Image
|
||||
|
||||
from rag.nlp import find_codec
|
||||
|
||||
@ -109,6 +110,52 @@ class RAGFlowExcelParser:
|
||||
ws.cell(row=row_num, column=col_num, value=value)
|
||||
return wb
|
||||
|
||||
@staticmethod
|
||||
def _extract_images_from_worksheet(ws, sheetname=None):
|
||||
"""
|
||||
Extract images from a worksheet and enrich them with vision-based descriptions.
|
||||
|
||||
Returns: List[dict]
|
||||
"""
|
||||
images = getattr(ws, "_images", [])
|
||||
if not images:
|
||||
return []
|
||||
|
||||
raw_items = []
|
||||
|
||||
for img in images:
|
||||
try:
|
||||
img_bytes = img._data()
|
||||
pil_img = Image.open(BytesIO(img_bytes)).convert("RGB")
|
||||
|
||||
anchor = img.anchor
|
||||
if hasattr(anchor, "_from") and hasattr(anchor, "_to"):
|
||||
r1, c1 = anchor._from.row + 1, anchor._from.col + 1
|
||||
r2, c2 = anchor._to.row + 1, anchor._to.col + 1
|
||||
if r1 == r2 and c1 == c2:
|
||||
span = "single_cell"
|
||||
else:
|
||||
span = "multi_cell"
|
||||
else:
|
||||
r1, c1 = anchor._from.row + 1, anchor._from.col + 1
|
||||
r2, c2 = r1, c1
|
||||
span = "single_cell"
|
||||
|
||||
item = {
|
||||
"sheet": sheetname or ws.title,
|
||||
"image": pil_img,
|
||||
"image_description": "",
|
||||
"row_from": r1,
|
||||
"col_from": c1,
|
||||
"row_to": r2,
|
||||
"col_to": c2,
|
||||
"span_type": span,
|
||||
}
|
||||
raw_items.append(item)
|
||||
except Exception:
|
||||
continue
|
||||
return raw_items
|
||||
|
||||
def html(self, fnm, chunk_rows=256):
|
||||
from html import escape
|
||||
|
||||
|
||||
@ -55,6 +55,31 @@ def vision_figure_parser_docx_wrapper(sections, tbls, callback=None,**kwargs):
|
||||
callback(0.8, f"Visual model error: {e}. Skipping figure parsing enhancement.")
|
||||
return tbls
|
||||
|
||||
def vision_figure_parser_figure_xlsx_wrapper(images,callback=None, **kwargs):
|
||||
tbls = []
|
||||
if not images:
|
||||
return []
|
||||
try:
|
||||
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
|
||||
callback(0.2, "Visual model detected. Attempting to enhance Excel image extraction...")
|
||||
except Exception:
|
||||
vision_model = None
|
||||
if vision_model:
|
||||
figures_data = [((
|
||||
img["image"], # Image.Image
|
||||
[img["image_description"]] # description list (must be list)
|
||||
),
|
||||
[
|
||||
(0, 0, 0, 0, 0) # dummy position
|
||||
]) for img in images]
|
||||
try:
|
||||
parser = VisionFigureParser(vision_model=vision_model, figures_data=figures_data, **kwargs)
|
||||
callback(0.22, "Parsing images...")
|
||||
boosted_figures = parser(callback=callback)
|
||||
tbls.extend(boosted_figures)
|
||||
except Exception as e:
|
||||
callback(0.25, f"Excel visual model error: {e}. Skipping vision enhancement.")
|
||||
return tbls
|
||||
|
||||
def vision_figure_parser_pdf_wrapper(tbls, callback=None, **kwargs):
|
||||
if not tbls:
|
||||
|
||||
@ -29,13 +29,14 @@ from collections import Counter
|
||||
from dateutil.parser import parse as datetime_parse
|
||||
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from deepdoc.parser.figure_parser import vision_figure_parser_figure_xlsx_wrapper
|
||||
from deepdoc.parser.utils import get_text
|
||||
from rag.nlp import rag_tokenizer, tokenize
|
||||
from rag.nlp import rag_tokenizer, tokenize, tokenize_table
|
||||
from deepdoc.parser import ExcelParser
|
||||
|
||||
|
||||
class Excel(ExcelParser):
|
||||
def __call__(self, fnm, binary=None, from_page=0, to_page=10000000000, callback=None):
|
||||
def __call__(self, fnm, binary=None, from_page=0, to_page=10000000000, callback=None, **kwargs):
|
||||
if not binary:
|
||||
wb = Excel._load_excel_to_workbook(fnm)
|
||||
else:
|
||||
@ -45,8 +46,23 @@ class Excel(ExcelParser):
|
||||
total += len(list(wb[sheetname].rows))
|
||||
res, fails, done = [], [], 0
|
||||
rn = 0
|
||||
flow_images = []
|
||||
pending_cell_images = []
|
||||
tables = []
|
||||
for sheetname in wb.sheetnames:
|
||||
ws = wb[sheetname]
|
||||
images = Excel._extract_images_from_worksheet(ws,sheetname=sheetname)
|
||||
if images:
|
||||
image_descriptions = vision_figure_parser_figure_xlsx_wrapper(images=images, callback=callback, **kwargs)
|
||||
if image_descriptions and len(image_descriptions) == len(images):
|
||||
for i, bf in enumerate(image_descriptions):
|
||||
images[i]["image_description"] = "\n".join(bf[0][1])
|
||||
for img in images:
|
||||
if (img["span_type"] == "single_cell"and img.get("image_description")):
|
||||
pending_cell_images.append(img)
|
||||
else:
|
||||
flow_images.append(img)
|
||||
|
||||
try:
|
||||
rows = list(ws.rows)
|
||||
except Exception as e:
|
||||
@ -75,9 +91,38 @@ class Excel(ExcelParser):
|
||||
if len(data) == 0:
|
||||
continue
|
||||
df = pd.DataFrame(data, columns=headers)
|
||||
for img in pending_cell_images:
|
||||
excel_row = img["row_from"] - 1
|
||||
excel_col = img["col_from"] - 1
|
||||
|
||||
df_row_idx = excel_row - header_rows
|
||||
if df_row_idx < 0 or df_row_idx >= len(df):
|
||||
flow_images.append(img)
|
||||
continue
|
||||
|
||||
if excel_col < 0 or excel_col >= len(df.columns):
|
||||
flow_images.append(img)
|
||||
continue
|
||||
|
||||
col_name = df.columns[excel_col]
|
||||
|
||||
if not df.iloc[df_row_idx][col_name]:
|
||||
df.iat[df_row_idx, excel_col] = img["image_description"]
|
||||
res.append(df)
|
||||
for img in flow_images:
|
||||
tables.append(
|
||||
(
|
||||
(
|
||||
img["image"], # Image.Image
|
||||
[img["image_description"]] # description list (must be list)
|
||||
),
|
||||
[
|
||||
(0, 0, 0, 0, 0) # dummy position
|
||||
]
|
||||
)
|
||||
)
|
||||
callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
return res
|
||||
return res,tables
|
||||
|
||||
def _parse_headers(self, ws, rows):
|
||||
if len(rows) == 0:
|
||||
@ -320,11 +365,12 @@ def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese
|
||||
|
||||
Every row in table will be treated as a chunk.
|
||||
"""
|
||||
|
||||
tbls = []
|
||||
is_english = lang.lower() == "english"
|
||||
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
excel_parser = Excel()
|
||||
dfs = excel_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)
|
||||
dfs,tbls = excel_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback, **kwargs)
|
||||
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
txt = get_text(filename, binary)
|
||||
@ -419,7 +465,9 @@ def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese
|
||||
continue
|
||||
tokenize(d, "; ".join(row_txt), eng)
|
||||
res.append(d)
|
||||
|
||||
if tbls:
|
||||
doc = {"docnm_kwd": filename, "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))}
|
||||
res.extend(tokenize_table(tbls, doc, is_english))
|
||||
KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
|
||||
callback(0.35, "")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user