mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
code cleans. (#9916)
### What problem does this PR solve? ### Type of change - [x] Refactoring - [x] Performance Improvement Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
This commit is contained in:
@ -36,10 +36,8 @@ try:
|
|||||||
updated_dataset = dataset_instance.update(updated_message)
|
updated_dataset = dataset_instance.update(updated_message)
|
||||||
|
|
||||||
# get the dataset (list datasets)
|
# get the dataset (list datasets)
|
||||||
dataset_list = ragflow_instance.list_datasets(id=dataset_instance.id)
|
|
||||||
dataset_instance_2 = dataset_list[0]
|
|
||||||
print(dataset_instance)
|
print(dataset_instance)
|
||||||
print(dataset_instance_2)
|
print(updated_dataset)
|
||||||
|
|
||||||
# delete the dataset (delete datasets)
|
# delete the dataset (delete datasets)
|
||||||
to_be_deleted_datasets = [dataset_instance.id]
|
to_be_deleted_datasets = [dataset_instance.id]
|
||||||
|
|||||||
@ -21,7 +21,7 @@ class NodeEmbeddings:
|
|||||||
embeddings: np.ndarray
|
embeddings: np.ndarray
|
||||||
|
|
||||||
|
|
||||||
def embed_nod2vec(
|
def embed_node2vec(
|
||||||
graph: nx.Graph | nx.DiGraph,
|
graph: nx.Graph | nx.DiGraph,
|
||||||
dimensions: int = 1536,
|
dimensions: int = 1536,
|
||||||
num_walks: int = 10,
|
num_walks: int = 10,
|
||||||
@ -44,13 +44,13 @@ def embed_nod2vec(
|
|||||||
return NodeEmbeddings(embeddings=lcc_tensors[0], nodes=lcc_tensors[1])
|
return NodeEmbeddings(embeddings=lcc_tensors[0], nodes=lcc_tensors[1])
|
||||||
|
|
||||||
|
|
||||||
def run(graph: nx.Graph, args: dict[str, Any]) -> NodeEmbeddings:
|
def run(graph: nx.Graph, args: dict[str, Any]) -> dict:
|
||||||
"""Run method definition."""
|
"""Run method definition."""
|
||||||
if args.get("use_lcc", True):
|
if args.get("use_lcc", True):
|
||||||
graph = stable_largest_connected_component(graph)
|
graph = stable_largest_connected_component(graph)
|
||||||
|
|
||||||
# create graph embedding using node2vec
|
# create graph embedding using node2vec
|
||||||
embeddings = embed_nod2vec(
|
embeddings = embed_node2vec(
|
||||||
graph=graph,
|
graph=graph,
|
||||||
dimensions=args.get("dimensions", 1536),
|
dimensions=args.get("dimensions", 1536),
|
||||||
num_walks=args.get("num_walks", 10),
|
num_walks=args.get("num_walks", 10),
|
||||||
|
|||||||
@ -23,7 +23,7 @@ import trio
|
|||||||
|
|
||||||
from api.utils import get_uuid
|
from api.utils import get_uuid
|
||||||
from graphrag.query_analyze_prompt import PROMPTS
|
from graphrag.query_analyze_prompt import PROMPTS
|
||||||
from graphrag.utils import get_entity_type2sampels, get_llm_cache, set_llm_cache, get_relation
|
from graphrag.utils import get_entity_type2samples, get_llm_cache, set_llm_cache, get_relation
|
||||||
from rag.utils import num_tokens_from_string, get_float
|
from rag.utils import num_tokens_from_string, get_float
|
||||||
from rag.utils.doc_store_conn import OrderByExpr
|
from rag.utils.doc_store_conn import OrderByExpr
|
||||||
|
|
||||||
@ -42,7 +42,7 @@ class KGSearch(Dealer):
|
|||||||
return response
|
return response
|
||||||
|
|
||||||
def query_rewrite(self, llm, question, idxnms, kb_ids):
|
def query_rewrite(self, llm, question, idxnms, kb_ids):
|
||||||
ty2ents = trio.run(lambda: get_entity_type2sampels(idxnms, kb_ids))
|
ty2ents = trio.run(lambda: get_entity_type2samples(idxnms, kb_ids))
|
||||||
hint_prompt = PROMPTS["minirag_query2kwd"].format(query=question,
|
hint_prompt = PROMPTS["minirag_query2kwd"].format(query=question,
|
||||||
TYPE_POOL=json.dumps(ty2ents, ensure_ascii=False, indent=2))
|
TYPE_POOL=json.dumps(ty2ents, ensure_ascii=False, indent=2))
|
||||||
result = self._chat(llm, hint_prompt, [{"role": "user", "content": "Output:"}], {})
|
result = self._chat(llm, hint_prompt, [{"role": "user", "content": "Output:"}], {})
|
||||||
|
|||||||
@ -561,7 +561,7 @@ def merge_tuples(list1, list2):
|
|||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
async def get_entity_type2sampels(idxnms, kb_ids: list):
|
async def get_entity_type2samples(idxnms, kb_ids: list):
|
||||||
es_res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids, "size": 10000, "fields": ["content_with_weight"]}, idxnms, kb_ids))
|
es_res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids, "size": 10000, "fields": ["content_with_weight"]}, idxnms, kb_ids))
|
||||||
|
|
||||||
res = defaultdict(list)
|
res = defaultdict(list)
|
||||||
|
|||||||
Reference in New Issue
Block a user