mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Refine resume parts and fix bugs in retrival using sql (#66)
This commit is contained in:
@ -21,20 +21,21 @@ from api.db.services.dialog_service import DialogService, ConversationService
|
||||
from api.db import LLMType
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMService, LLMBundle
|
||||
from api.settings import access_logger
|
||||
from api.settings import access_logger, stat_logger
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from api.utils import get_uuid
|
||||
from api.utils.api_utils import get_json_result
|
||||
from rag.app.resume import forbidden_select_fields4resume
|
||||
from rag.llm import ChatModel
|
||||
from rag.nlp import retrievaler
|
||||
from rag.nlp.search import index_name
|
||||
from rag.utils import num_tokens_from_string, encoder
|
||||
from rag.utils import num_tokens_from_string, encoder, rmSpace
|
||||
|
||||
|
||||
@manager.route('/set', methods=['POST'])
|
||||
@login_required
|
||||
@validate_request("dialog_id")
|
||||
def set():
|
||||
def set_conversation():
|
||||
req = request.json
|
||||
conv_id = req.get("conversation_id")
|
||||
if conv_id:
|
||||
@ -96,9 +97,10 @@ def rm():
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/list', methods=['GET'])
|
||||
@login_required
|
||||
def list():
|
||||
def list_convsersation():
|
||||
dialog_id = request.args["dialog_id"]
|
||||
try:
|
||||
convs = ConversationService.query(dialog_id=dialog_id)
|
||||
@ -112,7 +114,7 @@ def message_fit_in(msg, max_length=4000):
|
||||
def count():
|
||||
nonlocal msg
|
||||
tks_cnts = []
|
||||
for m in msg:tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
|
||||
for m in msg: tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
|
||||
total = 0
|
||||
for m in tks_cnts: total += m["count"]
|
||||
return total
|
||||
@ -121,22 +123,22 @@ def message_fit_in(msg, max_length=4000):
|
||||
if c < max_length: return c, msg
|
||||
msg = [m for m in msg if m.role in ["system", "user"]]
|
||||
c = count()
|
||||
if c < max_length:return c, msg
|
||||
if c < max_length: return c, msg
|
||||
msg_ = [m for m in msg[:-1] if m.role == "system"]
|
||||
msg_.append(msg[-1])
|
||||
msg = msg_
|
||||
c = count()
|
||||
if c < max_length:return c, msg
|
||||
if c < max_length: return c, msg
|
||||
ll = num_tokens_from_string(msg_[0].content)
|
||||
l = num_tokens_from_string(msg_[-1].content)
|
||||
if ll/(ll + l) > 0.8:
|
||||
if ll / (ll + l) > 0.8:
|
||||
m = msg_[0].content
|
||||
m = encoder.decode(encoder.encode(m)[:max_length-l])
|
||||
m = encoder.decode(encoder.encode(m)[:max_length - l])
|
||||
msg[0].content = m
|
||||
return max_length, msg
|
||||
|
||||
m = msg_[1].content
|
||||
m = encoder.decode(encoder.encode(m)[:max_length-l])
|
||||
m = encoder.decode(encoder.encode(m)[:max_length - l])
|
||||
msg[1].content = m
|
||||
return max_length, msg
|
||||
|
||||
@ -148,8 +150,8 @@ def completion():
|
||||
req = request.json
|
||||
msg = []
|
||||
for m in req["messages"]:
|
||||
if m["role"] == "system":continue
|
||||
if m["role"] == "assistant" and not msg:continue
|
||||
if m["role"] == "system": continue
|
||||
if m["role"] == "assistant" and not msg: continue
|
||||
msg.append({"role": m["role"], "content": m["content"]})
|
||||
try:
|
||||
e, dia = DialogService.get_by_id(req["dialog_id"])
|
||||
@ -166,7 +168,7 @@ def chat(dialog, messages, **kwargs):
|
||||
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
|
||||
llm = LLMService.query(llm_name=dialog.llm_id)
|
||||
if not llm:
|
||||
raise LookupError("LLM(%s) not found"%dialog.llm_id)
|
||||
raise LookupError("LLM(%s) not found" % dialog.llm_id)
|
||||
llm = llm[0]
|
||||
question = messages[-1]["content"]
|
||||
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
|
||||
@ -175,19 +177,21 @@ def chat(dialog, messages, **kwargs):
|
||||
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
|
||||
## try to use sql if field mapping is good to go
|
||||
if field_map:
|
||||
markdown_tbl,chunks = use_sql(question, field_map, dialog.tenant_id, chat_mdl)
|
||||
stat_logger.info("Use SQL to retrieval.")
|
||||
markdown_tbl, chunks = use_sql(question, field_map, dialog.tenant_id, chat_mdl)
|
||||
if markdown_tbl:
|
||||
return {"answer": markdown_tbl, "retrieval": {"chunks": chunks}}
|
||||
|
||||
prompt_config = dialog.prompt_config
|
||||
for p in prompt_config["parameters"]:
|
||||
if p["key"] == "knowledge":continue
|
||||
if p["key"] not in kwargs and not p["optional"]:raise KeyError("Miss parameter: " + p["key"])
|
||||
if p["key"] == "knowledge": continue
|
||||
if p["key"] not in kwargs and not p["optional"]: raise KeyError("Miss parameter: " + p["key"])
|
||||
if p["key"] not in kwargs:
|
||||
prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")
|
||||
prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
|
||||
|
||||
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold,
|
||||
dialog.vector_similarity_weight, top=1024, aggs=False)
|
||||
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
|
||||
dialog.similarity_threshold,
|
||||
dialog.vector_similarity_weight, top=1024, aggs=False)
|
||||
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
||||
|
||||
if not knowledges and prompt_config["empty_response"]:
|
||||
@ -202,17 +206,17 @@ def chat(dialog, messages, **kwargs):
|
||||
answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
|
||||
|
||||
answer = retrievaler.insert_citations(answer,
|
||||
[ck["content_ltks"] for ck in kbinfos["chunks"]],
|
||||
[ck["vector"] for ck in kbinfos["chunks"]],
|
||||
embd_mdl,
|
||||
tkweight=1-dialog.vector_similarity_weight,
|
||||
vtweight=dialog.vector_similarity_weight)
|
||||
[ck["content_ltks"] for ck in kbinfos["chunks"]],
|
||||
[ck["vector"] for ck in kbinfos["chunks"]],
|
||||
embd_mdl,
|
||||
tkweight=1 - dialog.vector_similarity_weight,
|
||||
vtweight=dialog.vector_similarity_weight)
|
||||
for c in kbinfos["chunks"]:
|
||||
if c.get("vector"):del c["vector"]
|
||||
if c.get("vector"): del c["vector"]
|
||||
return {"answer": answer, "retrieval": kbinfos}
|
||||
|
||||
|
||||
def use_sql(question,field_map, tenant_id, chat_mdl):
|
||||
def use_sql(question, field_map, tenant_id, chat_mdl):
|
||||
sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据我的问题写出sql。"
|
||||
user_promt = """
|
||||
表名:{};
|
||||
@ -220,37 +224,47 @@ def use_sql(question,field_map, tenant_id, chat_mdl):
|
||||
{}
|
||||
|
||||
问题:{}
|
||||
请写出SQL。
|
||||
请写出SQL,且只要SQL,不要有其他说明及文字。
|
||||
""".format(
|
||||
index_name(tenant_id),
|
||||
"\n".join([f"{k}: {v}" for k,v in field_map.items()]),
|
||||
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
|
||||
question
|
||||
)
|
||||
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.1})
|
||||
sql = re.sub(r".*?select ", "select ", sql, flags=re.IGNORECASE)
|
||||
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.06})
|
||||
stat_logger.info(f"“{question}” get SQL: {sql}")
|
||||
sql = re.sub(r"[\r\n]+", " ", sql.lower())
|
||||
sql = re.sub(r".*?select ", "select ", sql.lower())
|
||||
sql = re.sub(r" +", " ", sql)
|
||||
sql = re.sub(r"[;;].*", "", sql)
|
||||
if sql[:len("select ")].lower() != "select ":
|
||||
sql = re.sub(r"([;;]|```).*", "", sql)
|
||||
if sql[:len("select ")] != "select ":
|
||||
return None, None
|
||||
if sql[:len("select *")].lower() != "select *":
|
||||
if sql[:len("select *")] != "select *":
|
||||
sql = "select doc_id,docnm_kwd," + sql[6:]
|
||||
else:
|
||||
flds = []
|
||||
for k in field_map.keys():
|
||||
if k in forbidden_select_fields4resume:continue
|
||||
if len(flds) > 11:break
|
||||
flds.append(k)
|
||||
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
|
||||
|
||||
tbl = retrievaler.sql_retrieval(sql)
|
||||
if not tbl: return None, None
|
||||
stat_logger.info(f"“{question}” get SQL(refined): {sql}")
|
||||
tbl = retrievaler.sql_retrieval(sql, format="json")
|
||||
if not tbl or len(tbl["rows"]) == 0: return None, None
|
||||
|
||||
docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
|
||||
docnm_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
|
||||
clmn_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx|docnm_idx)]
|
||||
clmn_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
|
||||
|
||||
# compose markdown table
|
||||
clmns = "|".join([re.sub(r"/.*", "", field_map.get(tbl["columns"][i]["name"], f"C{i}")) for i in clmn_idx]) + "|原文"
|
||||
clmns = "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], f"C{i}")) for i in clmn_idx]) + "|原文"
|
||||
line = "|".join(["------" for _ in range(len(clmn_idx))]) + "|------"
|
||||
rows = ["|".join([str(r[i]) for i in clmn_idx])+"|" for r in tbl["rows"]]
|
||||
rows = ["|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
|
||||
if not docid_idx or not docnm_idx:
|
||||
access_logger.error("SQL missing field: " + sql)
|
||||
return "\n".join([clmns, line, "\n".join(rows)]), []
|
||||
|
||||
rows = "\n".join([r+f"##{ii}$$" for ii,r in enumerate(rows)])
|
||||
rows = "\n".join([r + f"##{ii}$$" for ii, r in enumerate(rows)])
|
||||
docid_idx = list(docid_idx)[0]
|
||||
docnm_idx = list(docnm_idx)[0]
|
||||
return "\n".join([clmns, line, rows]), [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]]
|
||||
|
||||
Reference in New Issue
Block a user