mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
support graph (#1152)
### What problem does this PR solve? #918 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
156
graph/component/generate.py
Normal file
156
graph/component/generate.py
Normal file
@ -0,0 +1,156 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import re
|
||||
from functools import partial
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from api.db import LLMType
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api.settings import retrievaler
|
||||
from graph.component.base import ComponentBase, ComponentParamBase
|
||||
|
||||
|
||||
class GenerateParam(ComponentParamBase):
|
||||
"""
|
||||
Define the Generate component parameters.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.llm_id = ""
|
||||
self.prompt = ""
|
||||
self.max_tokens = 256
|
||||
self.temperature = 0.1
|
||||
self.top_p = 0.3
|
||||
self.presence_penalty = 0.4
|
||||
self.frequency_penalty = 0.7
|
||||
self.cite = True
|
||||
#self.parameters = []
|
||||
|
||||
def check(self):
|
||||
self.check_decimal_float(self.temperature, "Temperature")
|
||||
self.check_decimal_float(self.presence_penalty, "Presence penalty")
|
||||
self.check_decimal_float(self.frequency_penalty, "Frequency penalty")
|
||||
self.check_positive_number(self.max_tokens, "Max tokens")
|
||||
self.check_decimal_float(self.top_p, "Top P")
|
||||
self.check_empty(self.llm_id, "LLM")
|
||||
#self.check_defined_type(self.parameters, "Parameters", ["list"])
|
||||
|
||||
def gen_conf(self):
|
||||
return {
|
||||
"max_tokens": self.max_tokens,
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p,
|
||||
"presence_penalty": self.presence_penalty,
|
||||
"frequency_penalty": self.frequency_penalty,
|
||||
}
|
||||
|
||||
|
||||
class Generate(ComponentBase):
|
||||
component_name = "Generate"
|
||||
|
||||
def _run(self, history, **kwargs):
|
||||
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
|
||||
prompt = self._param.prompt
|
||||
|
||||
retrieval_res = self.get_input()
|
||||
input = "\n- ".join(retrieval_res["content"])
|
||||
|
||||
|
||||
kwargs["input"] = input
|
||||
for n, v in kwargs.items():
|
||||
#prompt = re.sub(r"\{%s\}"%n, re.escape(str(v)), prompt)
|
||||
prompt = re.sub(r"\{%s\}"%n, str(v), prompt)
|
||||
|
||||
if kwargs.get("stream"):
|
||||
return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
|
||||
|
||||
if "empty_response" in retrieval_res.columns:
|
||||
return Generate.be_output(input)
|
||||
|
||||
ans = chat_mdl.chat(prompt, self._canvas.get_history(self._param.message_history_window_size), self._param.gen_conf())
|
||||
|
||||
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
|
||||
ans, idx = retrievaler.insert_citations(ans,
|
||||
[ck["content_ltks"]
|
||||
for _, ck in retrieval_res.iterrows()],
|
||||
[ck["vector"]
|
||||
for _,ck in retrieval_res.iterrows()],
|
||||
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, self._canvas.get_embedding_model()),
|
||||
tkweight=0.7,
|
||||
vtweight=0.3)
|
||||
del retrieval_res["vector"]
|
||||
retrieval_res = retrieval_res.to_dict("records")
|
||||
df = []
|
||||
for i in idx:
|
||||
df.append(retrieval_res[int(i)])
|
||||
r = re.search(r"^((.|[\r\n])*? ##%s\$\$)"%str(i), ans)
|
||||
assert r, f"{i} => {ans}"
|
||||
df[-1]["content"] = r.group(1)
|
||||
ans = re.sub(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), "", ans)
|
||||
if ans: df.append({"content": ans})
|
||||
return pd.DataFrame(df)
|
||||
|
||||
return Generate.be_output(ans)
|
||||
|
||||
def stream_output(self, chat_mdl, prompt, retrieval_res):
|
||||
res = None
|
||||
if "empty_response" in retrieval_res.columns and "\n- ".join(retrieval_res["content"]):
|
||||
res = {"content": "\n- ".join(retrieval_res["content"]), "reference": []}
|
||||
yield res
|
||||
self.set_output(res)
|
||||
return
|
||||
|
||||
answer = ""
|
||||
for ans in chat_mdl.chat_streamly(prompt, self._canvas.get_history(self._param.message_history_window_size), self._param.gen_conf()):
|
||||
res = {"content": ans, "reference": []}
|
||||
answer = ans
|
||||
yield res
|
||||
|
||||
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
|
||||
answer, idx = retrievaler.insert_citations(answer,
|
||||
[ck["content_ltks"]
|
||||
for _, ck in retrieval_res.iterrows()],
|
||||
[ck["vector"]
|
||||
for _, ck in retrieval_res.iterrows()],
|
||||
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, self._canvas.get_embedding_model()),
|
||||
tkweight=0.7,
|
||||
vtweight=0.3)
|
||||
doc_ids = set([])
|
||||
recall_docs = []
|
||||
for i in idx:
|
||||
did = retrieval_res.loc[int(i), "doc_id"]
|
||||
if did in doc_ids: continue
|
||||
doc_ids.add(did)
|
||||
recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
|
||||
|
||||
del retrieval_res["vector"]
|
||||
del retrieval_res["content_ltks"]
|
||||
|
||||
reference = {
|
||||
"chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
|
||||
"doc_aggs": recall_docs
|
||||
}
|
||||
|
||||
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
|
||||
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
|
||||
res = {"content": answer, "reference": reference}
|
||||
yield res
|
||||
|
||||
self.set_output(res)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user