mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
support graph (#1152)
### What problem does this PR solve? #918 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
87
graph/component/categorize.py
Normal file
87
graph/component/categorize.py
Normal file
@ -0,0 +1,87 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from abc import ABC
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from api.db import LLMType
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from graph.component import GenerateParam, Generate
|
||||
|
||||
|
||||
class CategorizeParam(GenerateParam):
|
||||
|
||||
"""
|
||||
Define the Categorize component parameters.
|
||||
"""
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.category_description = {}
|
||||
self.prompt = ""
|
||||
|
||||
def check(self):
|
||||
super().check()
|
||||
self.check_empty(self.category_description, "Category examples")
|
||||
|
||||
def get_prompt(self):
|
||||
cate_lines = []
|
||||
for c, desc in self.category_description.items():
|
||||
for l in desc["examples"].split("\n"):
|
||||
if not l: continue
|
||||
cate_lines.append("Question: {}\tCategory: {}".format(l, c))
|
||||
descriptions = []
|
||||
for c, desc in self.category_description.items():
|
||||
if desc.get("description"):
|
||||
descriptions.append(
|
||||
"--------------------\nCategory: {}\nDescription: {}\n".format(c, desc["description"]))
|
||||
|
||||
self.prompt = """
|
||||
You're a text classifier. You need to categorize the user’s questions into {} categories,
|
||||
namely: {}
|
||||
Here's description of each category:
|
||||
{}
|
||||
|
||||
You could learn from the following examples:
|
||||
{}
|
||||
You could learn from the above examples.
|
||||
Just mention the category names, no need for any additional words.
|
||||
""".format(
|
||||
len(self.category_description.keys()),
|
||||
"/".join(list(self.category_description.keys())),
|
||||
"\n".join(descriptions),
|
||||
"- ".join(cate_lines)
|
||||
)
|
||||
return self.prompt
|
||||
|
||||
|
||||
class Categorize(Generate, ABC):
|
||||
component_name = "Categorize"
|
||||
|
||||
def _run(self, history, **kwargs):
|
||||
input = self.get_input()
|
||||
print(input, "DDDDDDDDDDDDDDDDDDDDDDDDDDDDD")
|
||||
input = "Question: " + ("; ".join(input["content"]) if "content" in input else "") + "Category: "
|
||||
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
|
||||
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": input}],
|
||||
self._param.gen_conf())
|
||||
print(ans, ":::::::::::::::::::::::::::::::::")
|
||||
for c in self._param.category_description.keys():
|
||||
if ans.lower().find(c.lower()) >= 0:
|
||||
return Categorize.be_output(self._param.category_description[c]["to"])
|
||||
|
||||
return Categorize.be_output(self._param.category_description.items()[-1][1]["to"])
|
||||
|
||||
|
||||
Reference in New Issue
Block a user