Feat: add splitter (#10161)

### What problem does this PR solve?


### Type of change
- [x] New Feature (non-breaking change which adds functionality)

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: Lynn <lynn_inf@hotmail.com>
Co-authored-by: chanx <1243304602@qq.com>
Co-authored-by: balibabu <cike8899@users.noreply.github.com>
Co-authored-by: 纷繁下的无奈 <zhileihuang@126.com>
Co-authored-by: huangzl <huangzl@shinemo.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
Co-authored-by: Wilmer <33392318@qq.com>
Co-authored-by: Adrian Weidig <adrianweidig@gmx.net>
Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Yongteng Lei <yongtengrey@outlook.com>
Co-authored-by: Liu An <asiro@qq.com>
Co-authored-by: buua436 <66937541+buua436@users.noreply.github.com>
Co-authored-by: BadwomanCraZY <511528396@qq.com>
Co-authored-by: cucusenok <31804608+cucusenok@users.noreply.github.com>
Co-authored-by: Russell Valentine <russ@coldstonelabs.org>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Billy Bao <newyorkupperbay@gmail.com>
Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
Co-authored-by: TensorNull <129579691+TensorNull@users.noreply.github.com>
Co-authored-by: TensorNull <tensor.null@gmail.com>
This commit is contained in:
Kevin Hu
2025-09-19 10:15:19 +08:00
committed by GitHub
parent f9c7404bee
commit a1b947ffd6
81 changed files with 3083 additions and 799 deletions

View File

@ -88,7 +88,9 @@ jobs:
with:
context: .
push: true
tags: infiniflow/ragflow:${{ env.RELEASE_TAG }}
tags: |
infiniflow/ragflow:${{ env.RELEASE_TAG }}
infiniflow/ragflow:latest-full
file: Dockerfile
platforms: linux/amd64
@ -98,7 +100,9 @@ jobs:
with:
context: .
push: true
tags: infiniflow/ragflow:${{ env.RELEASE_TAG }}-slim
tags: |
infiniflow/ragflow:${{ env.RELEASE_TAG }}-slim
infiniflow/ragflow:latest-slim
file: Dockerfile
build-args: LIGHTEN=1
platforms: linux/amd64

View File

@ -83,7 +83,7 @@
},
"password": "20010812Yy!",
"port": 3306,
"sql": "Agent:WickedGoatsDivide@content",
"sql": "{Agent:WickedGoatsDivide@content}",
"username": "13637682833@163.com"
}
},
@ -114,9 +114,7 @@
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"ed31364c727211f0bdb2bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -124,7 +122,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -145,9 +143,7 @@
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"0f968106727311f08357bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -155,7 +151,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -176,9 +172,7 @@
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"4ad1f9d0727311f0827dbafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -186,7 +180,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -347,9 +341,7 @@
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"ed31364c727211f0bdb2bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -357,7 +349,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -387,9 +379,7 @@
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"0f968106727311f08357bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -397,7 +387,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -427,9 +417,7 @@
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"4ad1f9d0727311f0827dbafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -437,7 +425,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -539,7 +527,7 @@
},
"password": "20010812Yy!",
"port": 3306,
"sql": "Agent:WickedGoatsDivide@content",
"sql": "{Agent:WickedGoatsDivide@content}",
"username": "13637682833@163.com"
},
"label": "ExeSQL",

View File

@ -157,7 +157,7 @@ class CodeExec(ToolBase, ABC):
try:
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run", code_req, resp.status_code)
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run, code_req: {code_req}, resp.status_code {resp.status_code}:")
if resp.status_code != 200:
resp.raise_for_status()
body = resp.json()

View File

@ -53,7 +53,7 @@ class ExeSQLParam(ToolParamBase):
self.max_records = 1024
def check(self):
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgresql', 'mariadb', 'mssql'])
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql'])
self.check_empty(self.database, "Database name")
self.check_empty(self.username, "database username")
self.check_empty(self.host, "IP Address")
@ -111,7 +111,7 @@ class ExeSQL(ToolBase, ABC):
if self._param.db_type in ["mysql", "mariadb"]:
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'postgresql':
elif self._param.db_type == 'postgres':
db = psycopg2.connect(dbname=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'mssql':

View File

@ -0,0 +1,105 @@
# 健康检查与 Kubernetes 探针简明说明
本文件说明:什么是 K8s 探针、如何用 `/v1/system/healthz` 做健康检查,以及下文用例中的关键词含义。
## 什么是 K8s 探针Probe
- 探针是 K8s 用来“探测”容器是否健康/可对外服务的机制。
- 常见三类:
- livenessProbe活性探针。失败时 K8s 会重启容器,用于“应用卡死/失去连接时自愈”。
- readinessProbe就绪探针。失败时 Endpoint 不会被加入 Service 负载均衡,用于“应用尚未准备好时不接流量”。
- startupProbe启动探针。给慢启动应用更长的初始化窗口期间不执行 liveness/readiness。
- 这些探针通常通过 HTTP GET 访问一个公开且轻量的健康端点(无需鉴权),以 HTTP 状态码判定结果200=通过5xx/超时=失败。
## 本项目健康端点
- 已实现:`GET /v1/system/healthz`(无需认证)。
- 语义:
- 200关键依赖正常。
- 500任一关键依赖异常当前判定为 DB 或 Chat
- 响应体JSON最小字段 `status, db, chat`;并包含 `redis, doc_engine, storage` 等可观测项。失败项会在 `_meta` 中包含 `error/elapsed`
- 示例DB 故障):
```json
{"status":"nok","chat":"ok","db":"nok"}
```
## 用例背景Problem/use case
- 现状Ragflow 跑在 K8s数据库是 AWS RDS Postgres凭证由 Secret Manager 管理并每 7 天轮换。轮换后应用连接失效,需要手动重启 Pod 才能重新建立连接。
- 目标:通过 K8s 探针自动化检测并重启异常 Pod减少人工操作。
- 需求:一个“无需鉴权”的公共健康端点,能在依赖异常时返回非 200如 500且提供 JSON 详情。
- 现已满足:`/v1/system/healthz` 正是为此设计。
## 关键术语解释(对应你提供的描述)
- Ragflow instance部署在 K8s 的 Ragflow 服务。
- AWS RDS Postgres托管的 PostgreSQL 数据库实例。
- Secret Manager rotationSecrets 定期轮换(每 7 天),会导致旧连接失效。
- ProbesK8s 探针liveness/readiness用于自动重启或摘除不健康实例。
- Public endpoint without API key无需 Authorization 的 HTTP 路由,便于探针直接访问。
- Dependencies statuses依赖健康状态db、chat、redis、doc_engine、storage 等)。
- HTTP 500 with JSON当依赖异常时返回 500并附带 JSON 说明哪个子系统失败。
## 快速测试
- 正常:
```bash
curl -i http://<host>/v1/system/healthz
```
- 制造 DB 故障docker-compose 示例):
```bash
docker compose stop db && curl -i http://<host>/v1/system/healthz
```
(预期 500JSON 中 `db:"nok"`
## 更完整的测试清单
### 1) 仅查看 HTTP 状态码
```bash
curl -s -o /dev/null -w "%{http_code}\n" http://<host>/v1/system/healthz
```
期望:`200``500`
### 2) Windows PowerShell
```powershell
# 状态码
(Invoke-WebRequest -Uri "http://<host>/v1/system/healthz" -Method GET -TimeoutSec 3 -ErrorAction SilentlyContinue).StatusCode
# 完整响应
Invoke-RestMethod -Uri "http://<host>/v1/system/healthz" -Method GET
```
### 3) 通过 kubectl 端口转发本地测试
```bash
# 前端/网关暴露端口不同环境自行调整
kubectl port-forward deploy/<your-deploy> 8080:80 -n <ns>
curl -i http://127.0.0.1:8080/v1/system/healthz
```
### 4) 制造常见失败场景
- DB 失败(推荐):
```bash
docker compose stop db
curl -i http://<host>/v1/system/healthz # 预期 500
```
- Chat 失败(可选):将 `CHAT_CFG``factory`/`base_url` 设为无效并重启后端,再请求应为 500`chat:"nok"`
- Redis/存储/文档引擎:停用对应服务后再次请求,可在 JSON 中看到相应字段为 `"nok"`(不影响 200/500 判定)。
### 5) 浏览器验证
- 直接打开 `http://<host>/v1/system/healthz`,在 DevTools Network 查看 200/500页面正文就是 JSON。
- 反向代理注意:若有自定义 500 错页,需对 `/healthz` 关闭错误页拦截(如 `proxy_intercept_errors off;`)。
## K8s 探针示例
```yaml
readinessProbe:
httpGet:
path: /v1/system/healthz
port: 80
initialDelaySeconds: 5
periodSeconds: 10
timeoutSeconds: 2
failureThreshold: 1
livenessProbe:
httpGet:
path: /v1/system/healthz
port: 80
initialDelaySeconds: 10
periodSeconds: 10
timeoutSeconds: 2
failureThreshold: 3
```
提示如有反向代理Nginx自定义 500 错页,需对 `/healthz` 关闭错误页拦截,以便保留 JSON。

View File

@ -28,6 +28,7 @@ from api.db import CanvasCategory, FileType
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService, API4ConversationService
from api.db.services.document_service import DocumentService
from api.db.services.file_service import FileService
from api.db.services.task_service import queue_dataflow
from api.db.services.user_service import TenantService
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.settings import RetCode
@ -48,14 +49,6 @@ def templates():
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.query(canvas_category=CanvasCategory.Agent)])
@manager.route('/list', methods=['GET']) # noqa: F821
@login_required
def canvas_list():
return get_json_result(data=sorted([c.to_dict() for c in \
UserCanvasService.query(user_id=current_user.id, canvas_category=CanvasCategory.Agent)], key=lambda x: x["update_time"]*-1)
)
@manager.route('/rm', methods=['POST']) # noqa: F821
@validate_request("canvas_ids")
@login_required
@ -77,9 +70,10 @@ def save():
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
cate = req.get("canvas_category", CanvasCategory.Agent)
if "id" not in req:
req["user_id"] = current_user.id
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip(), canvas_category=CanvasCategory.Agent):
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip(), canvas_category=cate):
return get_data_error_result(message=f"{req['title'].strip()} already exists.")
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
@ -148,6 +142,14 @@ def run():
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
if cvs.canvas_category == CanvasCategory.DataFlow:
task_id = get_uuid()
flow_id = get_uuid()
ok, error_message = queue_dataflow(dsl=cvs.dsl, tenant_id=user_id, file=files[0], task_id=task_id, flow_id=flow_id, priority=0)
if not ok:
return server_error_response(error_message)
return get_json_result(data={"task_id": task_id, "message_id": flow_id})
try:
canvas = Canvas(cvs.dsl, current_user.id, req["id"])
except Exception as e:
@ -332,7 +334,7 @@ def test_db_connect():
if req["db_type"] in ["mysql", "mariadb"]:
db = MySQLDatabase(req["database"], user=req["username"], host=req["host"], port=req["port"],
password=req["password"])
elif req["db_type"] == 'postgresql':
elif req["db_type"] == 'postgres':
db = PostgresqlDatabase(req["database"], user=req["username"], host=req["host"], port=req["port"],
password=req["password"])
elif req["db_type"] == 'mssql':
@ -383,22 +385,31 @@ def getversion( version_id):
return get_json_result(data=f"Error getting history file: {e}")
@manager.route('/listteam', methods=['GET']) # noqa: F821
@manager.route('/list', methods=['GET']) # noqa: F821
@login_required
def list_canvas():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
try:
canvas_category = request.args.get("canvas_category")
if request.args.get("desc", "true").lower() == "false":
desc = False
else:
desc = True
owner_ids = request.args.get("owner_ids", [])
if not owner_ids:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
tenants = [m["tenant_id"] for m in tenants]
canvas, total = UserCanvasService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number,
items_per_page, orderby, desc, keywords, canvas_category=CanvasCategory.Agent)
tenants, current_user.id, page_number,
items_per_page, orderby, desc, keywords, canvas_category)
else:
tenants = owner_ids
canvas, total = UserCanvasService.get_by_tenant_ids(
tenants, current_user.id, 0,
0, orderby, desc, keywords, canvas_category)
return get_json_result(data={"canvas": canvas, "total": total})
except Exception as e:
return server_error_response(e)
@manager.route('/setting', methods=['POST']) # noqa: F821

View File

@ -182,6 +182,7 @@ def create():
"id": get_uuid(),
"kb_id": kb.id,
"parser_id": kb.parser_id,
"pipeline_id": kb.pipeline_id,
"parser_config": kb.parser_config,
"created_by": current_user.id,
"type": FileType.VIRTUAL,
@ -546,31 +547,22 @@ def get(doc_id):
@manager.route("/change_parser", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id", "parser_id")
@validate_request("doc_id")
def change_parser():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if doc.parser_id.lower() == req["parser_id"].lower():
if "parser_config" in req:
if req["parser_config"] == doc.parser_config:
return get_json_result(data=True)
else:
return get_json_result(data=True)
if (doc.type == FileType.VISUAL and req["parser_id"] != "picture") or (re.search(r"\.(ppt|pptx|pages)$", doc.name) and req["parser_id"] != "presentation"):
return get_data_error_result(message="Not supported yet!")
def reset_doc():
nonlocal doc
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress": 0, "progress_msg": "", "run": TaskStatus.UNSTART.value})
if not e:
return get_data_error_result(message="Document not found!")
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if doc.token_num > 0:
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, doc.process_duration * -1)
if not e:
@ -581,6 +573,26 @@ def change_parser():
if settings.docStoreConn.indexExist(search.index_name(tenant_id), doc.kb_id):
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
try:
if req.get("pipeline_id"):
if doc.pipeline_id == req["pipeline_id"]:
return get_json_result(data=True)
DocumentService.update_by_id(doc.id, {"pipeline_id": req["pipeline_id"]})
reset_doc()
return get_json_result(data=True)
if doc.parser_id.lower() == req["parser_id"].lower():
if "parser_config" in req:
if req["parser_config"] == doc.parser_config:
return get_json_result(data=True)
else:
return get_json_result(data=True)
if (doc.type == FileType.VISUAL and req["parser_id"] != "picture") or (re.search(r"\.(ppt|pptx|pages)$", doc.name) and req["parser_id"] != "presentation"):
return get_data_error_result(message="Not supported yet!")
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
reset_doc()
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)

View File

@ -64,7 +64,7 @@ def create():
e, t = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(message="Tenant not found.")
req["embd_id"] = t.embd_id
#req["embd_id"] = t.embd_id
if not KnowledgebaseService.save(**req):
return get_data_error_result()
return get_json_result(data={"kb_id": req["id"]})
@ -379,3 +379,19 @@ def get_meta():
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=DocumentService.get_meta_by_kbs(kb_ids))
@manager.route("/basic_info", methods=["GET"]) # noqa: F821
@login_required
def get_basic_info():
kb_id = request.args.get("kb_id", "")
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
basic_info = DocumentService.knowledgebase_basic_info(kb_id)
return get_json_result(data=basic_info)

View File

@ -414,7 +414,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id,
agent_id,
question,
session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
stream=True,
**req,
),
@ -432,7 +432,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id,
agent_id,
question,
session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
stream=False,
**req,
)

View File

@ -36,6 +36,8 @@ from rag.utils.storage_factory import STORAGE_IMPL, STORAGE_IMPL_TYPE
from timeit import default_timer as timer
from rag.utils.redis_conn import REDIS_CONN
from flask import jsonify
from api.utils.health import run_health_checks
@manager.route("/version", methods=["GET"]) # noqa: F821
@login_required
@ -169,6 +171,12 @@ def status():
return get_json_result(data=res)
@manager.route("/healthz", methods=["GET"]) # noqa: F821
def healthz():
result, all_ok = run_health_checks()
return jsonify(result), (200 if all_ok else 500)
@manager.route("/new_token", methods=["POST"]) # noqa: F821
@login_required
def new_token():

View File

@ -646,6 +646,7 @@ class Knowledgebase(DataBaseModel):
vector_similarity_weight = FloatField(default=0.3, index=True)
parser_id = CharField(max_length=32, null=False, help_text="default parser ID", default=ParserType.NAIVE.value, index=True)
pipeline_id = CharField(max_length=32, null=True, help_text="Pipeline ID", index=True)
parser_config = JSONField(null=False, default={"pages": [[1, 1000000]]})
pagerank = IntegerField(default=0, index=False)
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted, 1: validate)", default="1", index=True)
@ -662,6 +663,7 @@ class Document(DataBaseModel):
thumbnail = TextField(null=True, help_text="thumbnail base64 string")
kb_id = CharField(max_length=256, null=False, index=True)
parser_id = CharField(max_length=32, null=False, help_text="default parser ID", index=True)
pipeline_id = CharField(max_length=32, null=True, help_text="pipleline ID", index=True)
parser_config = JSONField(null=False, default={"pages": [[1, 1000000]]})
source_type = CharField(max_length=128, null=False, default="local", help_text="where dose this document come from", index=True)
type = CharField(max_length=32, null=False, help_text="file extension", index=True)
@ -1020,7 +1022,6 @@ def migrate_db():
migrate(migrator.add_column("dialog", "meta_data_filter", JSONField(null=True, default={})))
except Exception:
pass
try:
migrate(migrator.alter_column_type("canvas_template", "title", JSONField(null=True, default=dict, help_text="Canvas title")))
except Exception:
@ -1037,4 +1038,12 @@ def migrate_db():
migrate(migrator.add_column("canvas_template", "canvas_category", CharField(max_length=32, null=False, default="agent_canvas", help_text="agent_canvas|dataflow_canvas", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "pipeline_id", CharField(max_length=32, null=True, help_text="default parser ID", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("document", "pipeline_id", CharField(max_length=32, null=True, help_text="default parser ID", index=True)))
except Exception:
pass
logging.disable(logging.NOTSET)

View File

@ -95,7 +95,7 @@ class UserCanvasService(CommonService):
@DB.connection_context()
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
page_number, items_per_page,
orderby, desc, keywords, canvas_category=CanvasCategory.Agent,
orderby, desc, keywords, canvas_category=None
):
fields = [
cls.model.id,
@ -122,6 +122,7 @@ class UserCanvasService(CommonService):
TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id))
)
if canvas_category:
agents = agents.where(cls.model.canvas_category == canvas_category)
if desc:
agents = agents.order_by(cls.model.getter_by(orderby).desc())

View File

@ -24,7 +24,7 @@ from io import BytesIO
import trio
import xxhash
from peewee import fn
from peewee import fn, Case
from api import settings
from api.constants import IMG_BASE64_PREFIX, FILE_NAME_LEN_LIMIT
@ -674,6 +674,53 @@ class DocumentService(CommonService):
return False
@classmethod
@DB.connection_context()
def knowledgebase_basic_info(cls, kb_id: str) -> dict[str, int]:
# cancelled: run == "2" but progress can vary
cancelled = (
cls.model.select(fn.COUNT(1))
.where((cls.model.kb_id == kb_id) & (cls.model.run == TaskStatus.CANCEL))
.scalar()
)
row = (
cls.model.select(
# finished: progress == 1
fn.COALESCE(fn.SUM(Case(None, [(cls.model.progress == 1, 1)], 0)), 0).alias("finished"),
# failed: progress == -1
fn.COALESCE(fn.SUM(Case(None, [(cls.model.progress == -1, 1)], 0)), 0).alias("failed"),
# processing: 0 <= progress < 1
fn.COALESCE(
fn.SUM(
Case(
None,
[
(((cls.model.progress == 0) | ((cls.model.progress > 0) & (cls.model.progress < 1))), 1),
],
0,
)
),
0,
).alias("processing"),
)
.where(
(cls.model.kb_id == kb_id)
& ((cls.model.run.is_null(True)) | (cls.model.run != TaskStatus.CANCEL))
)
.dicts()
.get()
)
return {
"processing": int(row["processing"]),
"finished": int(row["finished"]),
"failed": int(row["failed"]),
"cancelled": int(cancelled),
}
def queue_raptor_o_graphrag_tasks(doc, ty, priority):
chunking_config = DocumentService.get_chunking_config(doc["id"])
hasher = xxhash.xxh64()
@ -702,6 +749,8 @@ def queue_raptor_o_graphrag_tasks(doc, ty, priority):
def get_queue_length(priority):
group_info = REDIS_CONN.queue_info(get_svr_queue_name(priority), SVR_CONSUMER_GROUP_NAME)
if not group_info:
return 0
return int(group_info.get("lag", 0) or 0)
@ -847,3 +896,4 @@ def doc_upload_and_parse(conversation_id, file_objs, user_id):
doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)
return [d["id"] for d, _ in files]

View File

@ -440,6 +440,7 @@ class FileService(CommonService):
"id": doc_id,
"kb_id": kb.id,
"parser_id": self.get_parser(filetype, filename, kb.parser_id),
"pipeline_id": kb.pipeline_id,
"parser_config": kb.parser_config,
"created_by": user_id,
"type": filetype,

View File

@ -472,7 +472,7 @@ def has_canceled(task_id):
return False
def queue_dataflow(dsl:str, tenant_id:str, doc_id:str, task_id:str, flow_id:str, priority: int, callback=None) -> tuple[bool, str]:
def queue_dataflow(dsl:str, tenant_id:str, task_id:str, flow_id:str=None, doc_id:str=None, file:dict=None, priority: int=0, callback=None) -> tuple[bool, str]:
"""
Returns a tuple (success: bool, error_message: str).
"""
@ -499,6 +499,7 @@ def queue_dataflow(dsl:str, tenant_id:str, doc_id:str, task_id:str, flow_id:str,
task["task_type"] = "dataflow"
task["dsl"] = dsl
task["dataflow_id"] = get_uuid() if not flow_id else flow_id
task["file"] = file
if not REDIS_CONN.queue_product(
get_svr_queue_name(priority), message=task

View File

@ -1,3 +1,51 @@
import base64
from functools import partial
from io import BytesIO
from PIL import Image
test_image_base64 = "iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAIAAAD/gAIDAAAA6ElEQVR4nO3QwQ3AIBDAsIP9d25XIC+EZE8QZc18w5l9O+AlZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBWYFZgVmBT+IYAHHLHkdEgAAAABJRU5ErkJggg=="
test_image = base64.b64decode(test_image_base64)
async def image2id(d: dict, storage_put_func: partial, bucket:str, objname:str):
import logging
from io import BytesIO
import trio
from rag.svr.task_executor import minio_limiter
if not d.get("image"):
return
with BytesIO() as output_buffer:
if isinstance(d["image"], bytes):
output_buffer.write(d["image"])
output_buffer.seek(0)
else:
# If the image is in RGBA mode, convert it to RGB mode before saving it in JPEG format.
if d["image"].mode in ("RGBA", "P"):
converted_image = d["image"].convert("RGB")
d["image"] = converted_image
try:
d["image"].save(output_buffer, format='JPEG')
except OSError as e:
logging.warning(
"Saving image exception, ignore: {}".format(str(e)))
async with minio_limiter:
await trio.to_thread.run_sync(lambda: storage_put_func(bucket=bucket, fnm=objname, binary=output_buffer.getvalue()))
d["img_id"] = f"{bucket}-{objname}"
if not isinstance(d["image"], bytes):
d["image"].close()
del d["image"] # Remove image reference
def id2image(image_id:str|None, storage_get_func: partial):
if not image_id:
return
arr = image_id.split("-")
if len(arr) != 2:
return
bkt, nm = image_id.split("-")
blob = storage_get_func(bucket=bkt, filename=nm)
if not blob:
return
return Image.open(BytesIO(blob))

104
api/utils/health.py Normal file
View File

@ -0,0 +1,104 @@
from timeit import default_timer as timer
from api import settings
from api.db.db_models import DB
from rag.utils.redis_conn import REDIS_CONN
from rag.utils.storage_factory import STORAGE_IMPL
def _ok_nok(ok: bool) -> str:
return "ok" if ok else "nok"
def check_db() -> tuple[bool, dict]:
st = timer()
try:
# lightweight probe; works for MySQL/Postgres
DB.execute_sql("SELECT 1")
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def check_redis() -> tuple[bool, dict]:
st = timer()
try:
ok = bool(REDIS_CONN.health())
return ok, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def check_doc_engine() -> tuple[bool, dict]:
st = timer()
try:
meta = settings.docStoreConn.health()
# treat any successful call as ok
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", **(meta or {})}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def check_storage() -> tuple[bool, dict]:
st = timer()
try:
STORAGE_IMPL.health()
return True, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def check_chat() -> tuple[bool, dict]:
st = timer()
try:
cfg = getattr(settings, "CHAT_CFG", None)
ok = bool(cfg and cfg.get("factory"))
return ok, {"elapsed": f"{(timer() - st) * 1000.0:.1f}"}
except Exception as e:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def run_health_checks() -> tuple[dict, bool]:
result: dict[str, str | dict] = {}
db_ok, db_meta = check_db()
chat_ok, chat_meta = check_chat()
result["db"] = _ok_nok(db_ok)
if not db_ok:
result.setdefault("_meta", {})["db"] = db_meta
result["chat"] = _ok_nok(chat_ok)
if not chat_ok:
result.setdefault("_meta", {})["chat"] = chat_meta
# Optional probes (do not change minimal contract but exposed for observability)
try:
redis_ok, redis_meta = check_redis()
result["redis"] = _ok_nok(redis_ok)
if not redis_ok:
result.setdefault("_meta", {})["redis"] = redis_meta
except Exception:
result["redis"] = "nok"
try:
doc_ok, doc_meta = check_doc_engine()
result["doc_engine"] = _ok_nok(doc_ok)
if not doc_ok:
result.setdefault("_meta", {})["doc_engine"] = doc_meta
except Exception:
result["doc_engine"] = "nok"
try:
sto_ok, sto_meta = check_storage()
result["storage"] = _ok_nok(sto_ok)
if not sto_ok:
result.setdefault("_meta", {})["storage"] = sto_meta
except Exception:
result["storage"] = "nok"
all_ok = (result.get("db") == "ok") and (result.get("chat") == "ok")
result["status"] = "ok" if all_ok else "nok"
return result, all_ok

View File

@ -219,6 +219,70 @@
}
]
},
{
"name": "TokenPony",
"logo": "",
"tags": "LLM",
"status": "1",
"llm": [
{
"llm_name": "qwen3-8b",
"tags": "LLM,CHAT,131k",
"max_tokens": 131000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-v3-0324",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-32b",
"tags": "LLM,CHAT,131k",
"max_tokens": 131000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "kimi-k2-instruct",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-r1-0528",
"tags": "LLM,CHAT,164k",
"max_tokens": 164000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-coder-480b",
"tags": "LLM,CHAT,1024k",
"max_tokens": 1024000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5",
"tags": "LLM,CHAT,131K",
"max_tokens": 131000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-v3.1",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
}
]
},
{
"name": "Tongyi-Qianwen",
"logo": "",
@ -4477,6 +4541,273 @@
}
]
},
{
"name": "CometAPI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,IMAGE2TEXT",
"status": "1",
"llm": [
{
"llm_name": "gpt-5-chat-latest",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "chatgpt-4o-latest",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-5-mini",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-5-nano",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-5",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4.1-mini",
"tags": "LLM,CHAT,1M",
"max_tokens": 1047576,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4.1-nano",
"tags": "LLM,CHAT,1M",
"max_tokens": 1047576,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4.1",
"tags": "LLM,CHAT,1M",
"max_tokens": 1047576,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4o-mini",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "o4-mini-2025-04-16",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "o3-pro-2025-06-10",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "claude-opus-4-1-20250805",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-opus-4-1-20250805-thinking",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-sonnet-4-20250514",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-sonnet-4-20250514-thinking",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-3-7-sonnet-latest",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "claude-3-5-haiku-latest",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gemini-2.5-pro",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "gemini-2.5-flash",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "gemini-2.5-flash-lite",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "gemini-2.0-flash",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "grok-4-0709",
"tags": "LLM,CHAT,131k",
"max_tokens": 131072,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "grok-3",
"tags": "LLM,CHAT,131k",
"max_tokens": 131072,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "grok-3-mini",
"tags": "LLM,CHAT,131k",
"max_tokens": 131072,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "grok-2-image-1212",
"tags": "LLM,CHAT,32k,IMAGE2TEXT",
"max_tokens": 32768,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "deepseek-v3.1",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-v3",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-r1-0528",
"tags": "LLM,CHAT,164k",
"max_tokens": 164000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-chat",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-reasoner",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-30b-a3b",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-coder-plus-2025-07-22",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "text-embedding-ada-002",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": "embedding",
"is_tools": false
},
{
"llm_name": "text-embedding-3-small",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": "embedding",
"is_tools": false
},
{
"llm_name": "text-embedding-3-large",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": "embedding",
"is_tools": false
},
{
"llm_name": "whisper-1",
"tags": "SPEECH2TEXT",
"max_tokens": 26214400,
"model_type": "speech2text",
"is_tools": false
},
{
"llm_name": "tts-1",
"tags": "TTS",
"max_tokens": 2048,
"model_type": "tts",
"is_tools": false
}
]
},
{
"name": "Meituan",
"logo": "",

View File

@ -37,7 +37,7 @@ TITLE_TAGS = {"h1": "#", "h2": "##", "h3": "###", "h4": "#####", "h5": "#####",
class RAGFlowHtmlParser:
def __call__(self, fnm, binary=None, chunk_token_num=None):
def __call__(self, fnm, binary=None, chunk_token_num=512):
if binary:
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")

View File

@ -34,7 +34,7 @@ from pypdf import PdfReader as pdf2_read
from api import settings
from api.utils.file_utils import get_project_base_directory
from deepdoc.vision import OCR, LayoutRecognizer, Recognizer, TableStructureRecognizer
from deepdoc.vision import OCR, AscendLayoutRecognizer, LayoutRecognizer, Recognizer, TableStructureRecognizer
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
from rag.nlp import rag_tokenizer
from rag.prompts import vision_llm_describe_prompt
@ -64,33 +64,38 @@ class RAGFlowPdfParser:
if PARALLEL_DEVICES > 1:
self.parallel_limiter = [trio.CapacityLimiter(1) for _ in range(PARALLEL_DEVICES)]
layout_recognizer_type = os.getenv("LAYOUT_RECOGNIZER_TYPE", "onnx").lower()
if layout_recognizer_type not in ["onnx", "ascend"]:
raise RuntimeError("Unsupported layout recognizer type.")
if hasattr(self, "model_speciess"):
self.layouter = LayoutRecognizer("layout." + self.model_speciess)
recognizer_domain = "layout." + self.model_speciess
else:
self.layouter = LayoutRecognizer("layout")
recognizer_domain = "layout"
if layout_recognizer_type == "ascend":
logging.debug("Using Ascend LayoutRecognizer")
self.layouter = AscendLayoutRecognizer(recognizer_domain)
else: # onnx
logging.debug("Using Onnx LayoutRecognizer")
self.layouter = LayoutRecognizer(recognizer_domain)
self.tbl_det = TableStructureRecognizer()
self.updown_cnt_mdl = xgb.Booster()
if not settings.LIGHTEN:
try:
import torch.cuda
if torch.cuda.is_available():
self.updown_cnt_mdl.set_param({"device": "cuda"})
except Exception:
logging.exception("RAGFlowPdfParser __init__")
try:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
self.updown_cnt_mdl.load_model(os.path.join(
model_dir, "updown_concat_xgb.model"))
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
except Exception:
model_dir = snapshot_download(
repo_id="InfiniFlow/text_concat_xgb_v1.0",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
self.updown_cnt_mdl.load_model(os.path.join(
model_dir, "updown_concat_xgb.model"))
model_dir = snapshot_download(repo_id="InfiniFlow/text_concat_xgb_v1.0", local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), local_dir_use_symlinks=False)
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
self.page_from = 0
self.column_num = 1
@ -102,13 +107,10 @@ class RAGFlowPdfParser:
return c["bottom"] - c["top"]
def _x_dis(self, a, b):
return min(abs(a["x1"] - b["x0"]), abs(a["x0"] - b["x1"]),
abs(a["x0"] + a["x1"] - b["x0"] - b["x1"]) / 2)
return min(abs(a["x1"] - b["x0"]), abs(a["x0"] - b["x1"]), abs(a["x0"] + a["x1"] - b["x0"] - b["x1"]) / 2)
def _y_dis(
self, a, b):
return (
b["top"] + b["bottom"] - a["top"] - a["bottom"]) / 2
def _y_dis(self, a, b):
return (b["top"] + b["bottom"] - a["top"] - a["bottom"]) / 2
def _match_proj(self, b):
proj_patt = [
@ -130,10 +132,7 @@ class RAGFlowPdfParser:
LEN = 6
tks_down = rag_tokenizer.tokenize(down["text"][:LEN]).split()
tks_up = rag_tokenizer.tokenize(up["text"][-LEN:]).split()
tks_all = up["text"][-LEN:].strip() \
+ (" " if re.match(r"[a-zA-Z0-9]+",
up["text"][-1] + down["text"][0]) else "") \
+ down["text"][:LEN].strip()
tks_all = up["text"][-LEN:].strip() + (" " if re.match(r"[a-zA-Z0-9]+", up["text"][-1] + down["text"][0]) else "") + down["text"][:LEN].strip()
tks_all = rag_tokenizer.tokenize(tks_all).split()
fea = [
up.get("R", -1) == down.get("R", -1),
@ -144,39 +143,30 @@ class RAGFlowPdfParser:
down["layout_type"] == "text",
up["layout_type"] == "table",
down["layout_type"] == "table",
True if re.search(
r"([。?!;!?;+)]|[a-z]\.)$",
up["text"]) else False,
True if re.search(r"([。?!;!?;+)]|[a-z]\.)$", up["text"]) else False,
True if re.search(r"[“、0-9+-]$", up["text"]) else False,
True if re.search(
r"(^.?[/,?;:\],。;:’”?!》】)-])",
down["text"]) else False,
True if re.search(r"(^.?[/,?;:\],。;:’”?!》】)-])", down["text"]) else False,
True if re.match(r"[\(][^\(\)]+[\)]$", up["text"]) else False,
True if re.search(r"[,][^。.]+$", up["text"]) else False,
True if re.search(r"[,][^。.]+$", up["text"]) else False,
True if re.search(r"[\(][^\)]+$", up["text"])
and re.search(r"[\)]", down["text"]) else False,
True if re.search(r"[\(][^\)]+$", up["text"]) and re.search(r"[\)]", down["text"]) else False,
self._match_proj(down),
True if re.match(r"[A-Z]", down["text"]) else False,
True if re.match(r"[A-Z]", up["text"][-1]) else False,
True if re.match(r"[a-z0-9]", up["text"][-1]) else False,
True if re.match(r"[0-9.%,-]+$", down["text"]) else False,
up["text"].strip()[-2:] == down["text"].strip()[-2:] if len(up["text"].strip()
) > 1 and len(
down["text"].strip()) > 1 else False,
up["text"].strip()[-2:] == down["text"].strip()[-2:] if len(up["text"].strip()) > 1 and len(down["text"].strip()) > 1 else False,
up["x0"] > down["x1"],
abs(self.__height(up) - self.__height(down)) / min(self.__height(up),
self.__height(down)),
abs(self.__height(up) - self.__height(down)) / min(self.__height(up), self.__height(down)),
self._x_dis(up, down) / max(w, 0.000001),
(len(up["text"]) - len(down["text"])) /
max(len(up["text"]), len(down["text"])),
(len(up["text"]) - len(down["text"])) / max(len(up["text"]), len(down["text"])),
len(tks_all) - len(tks_up) - len(tks_down),
len(tks_down) - len(tks_up),
tks_down[-1] == tks_up[-1] if tks_down and tks_up else False,
max(down["in_row"], up["in_row"]),
abs(down["in_row"] - up["in_row"]),
len(tks_down) == 1 and rag_tokenizer.tag(tks_down[0]).find("n") >= 0,
len(tks_up) == 1 and rag_tokenizer.tag(tks_up[0]).find("n") >= 0
len(tks_up) == 1 and rag_tokenizer.tag(tks_up[0]).find("n") >= 0,
]
return fea
@ -187,9 +177,7 @@ class RAGFlowPdfParser:
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threshold \
and arr[j + 1]["top"] < arr[j]["top"] \
and arr[j + 1]["page_number"] == arr[j]["page_number"]:
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threshold and arr[j + 1]["top"] < arr[j]["top"] and arr[j + 1]["page_number"] == arr[j]["page_number"]:
tmp = arr[j]
arr[j] = arr[j + 1]
arr[j + 1] = tmp
@ -197,8 +185,7 @@ class RAGFlowPdfParser:
def _has_color(self, o):
if o.get("ncs", "") == "DeviceGray":
if o["stroking_color"] and o["stroking_color"][0] == 1 and o["non_stroking_color"] and \
o["non_stroking_color"][0] == 1:
if o["stroking_color"] and o["stroking_color"][0] == 1 and o["non_stroking_color"] and o["non_stroking_color"][0] == 1:
if re.match(r"[a-zT_\[\]\(\)-]+", o.get("text", "")):
return False
return True
@ -216,8 +203,7 @@ class RAGFlowPdfParser:
if not tbls:
continue
for tb in tbls: # for table
left, top, right, bott = tb["x0"] - MARGIN, tb["top"] - MARGIN, \
tb["x1"] + MARGIN, tb["bottom"] + MARGIN
left, top, right, bott = tb["x0"] - MARGIN, tb["top"] - MARGIN, tb["x1"] + MARGIN, tb["bottom"] + MARGIN
left *= ZM
top *= ZM
right *= ZM
@ -232,14 +218,13 @@ class RAGFlowPdfParser:
tbcnt = np.cumsum(tbcnt)
for i in range(len(tbcnt) - 1): # for page
pg = []
for j, tb_items in enumerate(
recos[tbcnt[i]: tbcnt[i + 1]]): # for table
for j, tb_items in enumerate(recos[tbcnt[i] : tbcnt[i + 1]]): # for table
poss = pos[tbcnt[i] : tbcnt[i + 1]]
for it in tb_items: # for table components
it["x0"] = (it["x0"] + poss[j][0])
it["x1"] = (it["x1"] + poss[j][0])
it["top"] = (it["top"] + poss[j][1])
it["bottom"] = (it["bottom"] + poss[j][1])
it["x0"] = it["x0"] + poss[j][0]
it["x1"] = it["x1"] + poss[j][0]
it["top"] = it["top"] + poss[j][1]
it["bottom"] = it["bottom"] + poss[j][1]
for n in ["x0", "x1", "top", "bottom"]:
it[n] /= ZM
it["top"] += self.page_cum_height[i]
@ -250,8 +235,7 @@ class RAGFlowPdfParser:
self.tb_cpns.extend(pg)
def gather(kwd, fzy=10, ption=0.6):
eles = Recognizer.sort_Y_firstly(
[r for r in self.tb_cpns if re.match(kwd, r["label"])], fzy)
eles = Recognizer.sort_Y_firstly([r for r in self.tb_cpns if re.match(kwd, r["label"])], fzy)
eles = Recognizer.layouts_cleanup(self.boxes, eles, 5, ption)
return Recognizer.sort_Y_firstly(eles, 0)
@ -259,8 +243,7 @@ class RAGFlowPdfParser:
headers = gather(r".*header$")
rows = gather(r".* (row|header)")
spans = gather(r".*spanning")
clmns = sorted([r for r in self.tb_cpns if re.match(
r"table column$", r["label"])], key=lambda x: (x["pn"], x["layoutno"], x["x0"]))
clmns = sorted([r for r in self.tb_cpns if re.match(r"table column$", r["label"])], key=lambda x: (x["pn"], x["layoutno"], x["x0"]))
clmns = Recognizer.layouts_cleanup(self.boxes, clmns, 5, 0.5)
for b in self.boxes:
if b.get("layout_type", "") != "table":
@ -271,8 +254,7 @@ class RAGFlowPdfParser:
b["R_top"] = rows[ii]["top"]
b["R_bott"] = rows[ii]["bottom"]
ii = Recognizer.find_overlapped_with_threshold(
b, headers, thr=0.3)
ii = Recognizer.find_overlapped_with_threshold(b, headers, thr=0.3)
if ii is not None:
b["H_top"] = headers[ii]["top"]
b["H_bott"] = headers[ii]["bottom"]
@ -305,12 +287,12 @@ class RAGFlowPdfParser:
return
bxs = [(line[0], line[1][0]) for line in bxs]
bxs = Recognizer.sort_Y_firstly(
[{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM,
"top": b[0][1] / ZM, "text": "", "txt": t,
"bottom": b[-1][1] / ZM,
"chars": [],
"page_number": pagenum} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
self.mean_height[pagenum-1] / 3
[
{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM, "top": b[0][1] / ZM, "text": "", "txt": t, "bottom": b[-1][1] / ZM, "chars": [], "page_number": pagenum}
for b, t in bxs
if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]
],
self.mean_height[pagenum - 1] / 3,
)
# merge chars in the same rect
@ -321,7 +303,7 @@ class RAGFlowPdfParser:
continue
ch = c["bottom"] - c["top"]
bh = bxs[ii]["bottom"] - bxs[ii]["top"]
if abs(ch - bh) / max(ch, bh) >= 0.7 and c["text"] != ' ':
if abs(ch - bh) / max(ch, bh) >= 0.7 and c["text"] != " ":
self.lefted_chars.append(c)
continue
bxs[ii]["chars"].append(c)
@ -345,8 +327,7 @@ class RAGFlowPdfParser:
img_np = np.array(img)
for b in bxs:
if not b["text"]:
left, right, top, bott = b["x0"] * ZM, b["x1"] * \
ZM, b["top"] * ZM, b["bottom"] * ZM
left, right, top, bott = b["x0"] * ZM, b["x1"] * ZM, b["top"] * ZM, b["bottom"] * ZM
b["box_image"] = self.ocr.get_rotate_crop_image(img_np, np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
boxes_to_reg.append(b)
del b["txt"]
@ -357,20 +338,16 @@ class RAGFlowPdfParser:
logging.info(f"__ocr recognize {len(bxs)} boxes cost {timer() - start}s")
bxs = [b for b in bxs if b["text"]]
if self.mean_height[pagenum - 1] == 0:
self.mean_height[pagenum-1] = np.median([b["bottom"] - b["top"]
for b in bxs])
self.mean_height[pagenum - 1] = np.median([b["bottom"] - b["top"] for b in bxs])
self.boxes.append(bxs)
def _layouts_rec(self, ZM, drop=True):
assert len(self.page_images) == len(self.boxes)
self.boxes, self.page_layout = self.layouter(
self.page_images, self.boxes, ZM, drop=drop)
self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM, drop=drop)
# cumlative Y
for i in range(len(self.boxes)):
self.boxes[i]["top"] += \
self.page_cum_height[self.boxes[i]["page_number"] - 1]
self.boxes[i]["bottom"] += \
self.page_cum_height[self.boxes[i]["page_number"] - 1]
self.boxes[i]["top"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
self.boxes[i]["bottom"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
def _text_merge(self):
# merge adjusted boxes
@ -390,12 +367,10 @@ class RAGFlowPdfParser:
while i < len(bxs) - 1:
b = bxs[i]
b_ = bxs[i + 1]
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure",
"equation"]:
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure", "equation"]:
i += 1
continue
if abs(self._y_dis(b, b_)
) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
# merge
bxs[i]["x1"] = b_["x1"]
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
@ -408,16 +383,14 @@ class RAGFlowPdfParser:
dis_thr = 1
dis = b["x1"] - b_["x0"]
if b.get("layout_type", "") != "text" or b_.get(
"layout_type", "") != "text":
if b.get("layout_type", "") != "text" or b_.get("layout_type", "") != "text":
if end_with(b, "") or start_with(b_, ""):
dis_thr = -8
else:
i += 1
continue
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 5 \
and dis >= dis_thr and b["x1"] < b_["x1"]:
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 5 and dis >= dis_thr and b["x1"] < b_["x1"]:
# merge
bxs[i]["x1"] = b_["x1"]
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
@ -429,23 +402,22 @@ class RAGFlowPdfParser:
self.boxes = bxs
def _naive_vertical_merge(self, zoomin=3):
bxs = Recognizer.sort_Y_firstly(
self.boxes, np.median(
self.mean_height) / 3)
import math
bxs = Recognizer.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
if not column_width or math.isnan(column_width):
column_width = self.mean_width[0]
self.column_num = int(self.page_images[0].size[0] / zoomin / column_width)
if column_width < self.page_images[0].size[0] / zoomin / self.column_num:
logging.info("Multi-column................... {} {}".format(column_width,
self.page_images[0].size[0] / zoomin / self.column_num))
logging.info("Multi-column................... {} {}".format(column_width, self.page_images[0].size[0] / zoomin / self.column_num))
self.boxes = self.sort_X_by_page(self.boxes, column_width / self.column_num)
i = 0
while i + 1 < len(bxs):
b = bxs[i]
b_ = bxs[i + 1]
if b["page_number"] < b_["page_number"] and re.match(
r"[0-9 •一—-]+$", b["text"]):
if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]):
bxs.pop(i)
continue
if not b["text"].strip():
@ -453,8 +425,7 @@ class RAGFlowPdfParser:
continue
concatting_feats = [
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
len(b["text"].strip()) > 1 and b["text"].strip(
)[-2] in ",;:'\",‘“、;:",
len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:",
b_["text"].strip() and b_["text"].strip()[0] in "。;?!?”)),,、:",
]
# features for not concating
@ -462,21 +433,20 @@ class RAGFlowPdfParser:
b.get("layoutno", 0) != b_.get("layoutno", 0),
b["text"].strip()[-1] in "。?!?",
self.is_english and b["text"].strip()[-1] in ".!?",
b["page_number"] == b_["page_number"] and b_["top"] -
b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
b["page_number"] < b_["page_number"] and abs(
b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
b["page_number"] == b_["page_number"] and b_["top"] - b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
b["page_number"] < b_["page_number"] and abs(b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
]
# split features
detach_feats = [b["x1"] < b_["x0"],
b["x0"] > b_["x1"]]
detach_feats = [b["x1"] < b_["x0"], b["x0"] > b_["x1"]]
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
logging.debug("{} {} {} {}".format(
logging.debug(
"{} {} {} {}".format(
b["text"],
b_["text"],
any(feats),
any(concatting_feats),
))
)
)
i += 1
continue
# merge up and down
@ -529,14 +499,11 @@ class RAGFlowPdfParser:
if not concat_between_pages and down["page_number"] > up["page_number"]:
break
if up.get("R", "") != down.get(
"R", "") and up["text"][-1] != "":
if up.get("R", "") != down.get("R", "") and up["text"][-1] != "":
i += 1
continue
if re.match(r"[0-9]{2,3}/[0-9]{3}$", up["text"]) \
or re.match(r"[0-9]{2,3}/[0-9]{3}$", down["text"]) \
or not down["text"].strip():
if re.match(r"[0-9]{2,3}/[0-9]{3}$", up["text"]) or re.match(r"[0-9]{2,3}/[0-9]{3}$", down["text"]) or not down["text"].strip():
i += 1
continue
@ -544,14 +511,12 @@ class RAGFlowPdfParser:
i += 1
continue
if up["x1"] < down["x0"] - 10 * \
mw or up["x0"] > down["x1"] + 10 * mw:
if up["x1"] < down["x0"] - 10 * mw or up["x0"] > down["x1"] + 10 * mw:
i += 1
continue
if i - dp < 5 and up.get("layout_type") == "text":
if up.get("layoutno", "1") == down.get(
"layoutno", "2"):
if up.get("layoutno", "1") == down.get("layoutno", "2"):
dfs(down, i + 1)
boxes.pop(i)
return
@ -559,8 +524,7 @@ class RAGFlowPdfParser:
continue
fea = self._updown_concat_features(up, down)
if self.updown_cnt_mdl.predict(
xgb.DMatrix([fea]))[0] <= 0.5:
if self.updown_cnt_mdl.predict(xgb.DMatrix([fea]))[0] <= 0.5:
i += 1
continue
dfs(down, i + 1)
@ -584,16 +548,14 @@ class RAGFlowPdfParser:
c["text"] = c["text"].strip()
if not c["text"]:
continue
if t["text"] and re.match(
r"[0-9\.a-zA-Z]+$", t["text"][-1] + c["text"][-1]):
if t["text"] and re.match(r"[0-9\.a-zA-Z]+$", t["text"][-1] + c["text"][-1]):
t["text"] += " "
t["text"] += c["text"]
t["x0"] = min(t["x0"], c["x0"])
t["x1"] = max(t["x1"], c["x1"])
t["page_number"] = min(t["page_number"], c["page_number"])
t["bottom"] = c["bottom"]
if not t["layout_type"] \
and c["layout_type"]:
if not t["layout_type"] and c["layout_type"]:
t["layout_type"] = c["layout_type"]
boxes.append(t)
@ -605,25 +567,20 @@ class RAGFlowPdfParser:
findit = False
i = 0
while i < len(self.boxes):
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$",
re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
i += 1
continue
findit = True
eng = re.match(
r"[0-9a-zA-Z :'.-]{5,}",
self.boxes[i]["text"].strip())
eng = re.match(r"[0-9a-zA-Z :'.-]{5,}", self.boxes[i]["text"].strip())
self.boxes.pop(i)
if i >= len(self.boxes):
break
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(
self.boxes[i]["text"].strip().split()[:2])
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split()[:2])
while not prefix:
self.boxes.pop(i)
if i >= len(self.boxes):
break
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(
self.boxes[i]["text"].strip().split()[:2])
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split()[:2])
self.boxes.pop(i)
if i >= len(self.boxes) or not prefix:
break
@ -662,10 +619,12 @@ class RAGFlowPdfParser:
self.boxes.pop(i + 1)
continue
if b["text"].strip()[0] != b_["text"].strip()[0] \
or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm") \
or rag_tokenizer.is_chinese(b["text"].strip()[0]) \
or b["top"] > b_["bottom"]:
if (
b["text"].strip()[0] != b_["text"].strip()[0]
or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm")
or rag_tokenizer.is_chinese(b["text"].strip()[0])
or b["top"] > b_["bottom"]
):
i += 1
continue
b_["text"] = b["text"] + "\n" + b_["text"]
@ -685,12 +644,8 @@ class RAGFlowPdfParser:
if "layoutno" not in self.boxes[i]:
i += 1
continue
lout_no = str(self.boxes[i]["page_number"]) + \
"-" + str(self.boxes[i]["layoutno"])
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption",
"title",
"figure caption",
"reference"]:
lout_no = str(self.boxes[i]["page_number"]) + "-" + str(self.boxes[i]["layoutno"])
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption", "title", "figure caption", "reference"]:
nomerge_lout_no.append(lst_lout_no)
if self.boxes[i]["layout_type"] == "table":
if re.match(r"(数据|资料|图表)*来源[: ]", self.boxes[i]["text"]):
@ -716,8 +671,7 @@ class RAGFlowPdfParser:
# merge table on different pages
nomerge_lout_no = set(nomerge_lout_no)
tbls = sorted([(k, bxs) for k, bxs in tables.items()],
key=lambda x: (x[1][0]["top"], x[1][0]["x0"]))
tbls = sorted([(k, bxs) for k, bxs in tables.items()], key=lambda x: (x[1][0]["top"], x[1][0]["x0"]))
i = len(tbls) - 1
while i - 1 >= 0:
@ -758,9 +712,7 @@ class RAGFlowPdfParser:
if b.get("layout_type", "").find("caption") >= 0:
continue
y_dis = self._y_dis(c, b)
x_dis = self._x_dis(
c, b) if not x_overlapped(
c, b) else 0
x_dis = self._x_dis(c, b) if not x_overlapped(c, b) else 0
dis = y_dis * y_dis + x_dis * x_dis
if dis < minv:
mink = k
@ -774,18 +726,10 @@ class RAGFlowPdfParser:
# continue
if tv < fv and tk:
tables[tk].insert(0, c)
logging.debug(
"TABLE:" +
self.boxes[i]["text"] +
"; Cap: " +
tk)
logging.debug("TABLE:" + self.boxes[i]["text"] + "; Cap: " + tk)
elif fk:
figures[fk].insert(0, c)
logging.debug(
"FIGURE:" +
self.boxes[i]["text"] +
"; Cap: " +
tk)
logging.debug("FIGURE:" + self.boxes[i]["text"] + "; Cap: " + tk)
self.boxes.pop(i)
def cropout(bxs, ltype, poss):
@ -794,29 +738,19 @@ class RAGFlowPdfParser:
if len(pn) < 2:
pn = list(pn)[0]
ht = self.page_cum_height[pn]
b = {
"x0": np.min([b["x0"] for b in bxs]),
"top": np.min([b["top"] for b in bxs]) - ht,
"x1": np.max([b["x1"] for b in bxs]),
"bottom": np.max([b["bottom"] for b in bxs]) - ht
}
b = {"x0": np.min([b["x0"] for b in bxs]), "top": np.min([b["top"] for b in bxs]) - ht, "x1": np.max([b["x1"] for b in bxs]), "bottom": np.max([b["bottom"] for b in bxs]) - ht}
louts = [layout for layout in self.page_layout[pn] if layout["type"] == ltype]
ii = Recognizer.find_overlapped(b, louts, naive=True)
if ii is not None:
b = louts[ii]
else:
logging.warning(
f"Missing layout match: {pn + 1},%s" %
(bxs[0].get(
"layoutno", "")))
logging.warning(f"Missing layout match: {pn + 1},%s" % (bxs[0].get("layoutno", "")))
left, top, right, bott = b["x0"], b["top"], b["x1"], b["bottom"]
if right < left:
right = left + 1
poss.append((pn + self.page_from, left, right, top, bott))
return self.page_images[pn] \
.crop((left * ZM, top * ZM,
right * ZM, bott * ZM))
return self.page_images[pn].crop((left * ZM, top * ZM, right * ZM, bott * ZM))
pn = {}
for b in bxs:
p = b["page_number"] - 1
@ -825,10 +759,7 @@ class RAGFlowPdfParser:
pn[p].append(b)
pn = sorted(pn.items(), key=lambda x: x[0])
imgs = [cropout(arr, ltype, poss) for p, arr in pn]
pic = Image.new("RGB",
(int(np.max([i.size[0] for i in imgs])),
int(np.sum([m.size[1] for m in imgs]))),
(245, 245, 245))
pic = Image.new("RGB", (int(np.max([i.size[0] for i in imgs])), int(np.sum([m.size[1] for m in imgs]))), (245, 245, 245))
height = 0
for img in imgs:
pic.paste(img, (0, int(height)))
@ -848,30 +779,20 @@ class RAGFlowPdfParser:
poss = []
if separate_tables_figures:
figure_results.append(
(cropout(
bxs,
"figure", poss),
[txt]))
figure_results.append((cropout(bxs, "figure", poss), [txt]))
figure_positions.append(poss)
else:
res.append(
(cropout(
bxs,
"figure", poss),
[txt]))
res.append((cropout(bxs, "figure", poss), [txt]))
positions.append(poss)
for k, bxs in tables.items():
if not bxs:
continue
bxs = Recognizer.sort_Y_firstly(bxs, np.mean(
[(b["bottom"] - b["top"]) / 2 for b in bxs]))
bxs = Recognizer.sort_Y_firstly(bxs, np.mean([(b["bottom"] - b["top"]) / 2 for b in bxs]))
poss = []
res.append((cropout(bxs, "table", poss),
self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
res.append((cropout(bxs, "table", poss), self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
positions.append(poss)
if separate_tables_figures:
@ -905,7 +826,7 @@ class RAGFlowPdfParser:
(r"[0-9]+", 10),
(r"[\(][0-9]+[\)]", 11),
(r"[零一二三四五六七八九十百]+是", 12),
(r"[⚫•➢✓]", 12)
(r"[⚫•➢✓]", 12),
]:
if re.match(p, line):
return j
@ -924,12 +845,9 @@ class RAGFlowPdfParser:
if pn[-1] - 1 >= page_images_cnt:
return ""
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
.format("-".join([str(p) for p in pn]),
bx["x0"], bx["x1"], top, bott)
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##".format("-".join([str(p) for p in pn]), bx["x0"], bx["x1"], top, bott)
def __filterout_scraps(self, boxes, ZM):
def width(b):
return b["x1"] - b["x0"]
@ -939,8 +857,7 @@ class RAGFlowPdfParser:
def usefull(b):
if b.get("layout_type"):
return True
if width(
b) > self.page_images[b["page_number"] - 1].size[0] / ZM / 3:
if width(b) > self.page_images[b["page_number"] - 1].size[0] / ZM / 3:
return True
if b["bottom"] - b["top"] > self.mean_height[b["page_number"] - 1]:
return True
@ -952,30 +869,22 @@ class RAGFlowPdfParser:
widths = []
pw = self.page_images[boxes[0]["page_number"] - 1].size[0] / ZM
mh = self.mean_height[boxes[0]["page_number"] - 1]
mj = self.proj_match(
boxes[0]["text"]) or boxes[0].get(
"layout_type",
"") == "title"
mj = self.proj_match(boxes[0]["text"]) or boxes[0].get("layout_type", "") == "title"
def dfs(line, st):
nonlocal mh, pw, lines, widths
lines.append(line)
widths.append(width(line))
mmj = self.proj_match(
line["text"]) or line.get(
"layout_type",
"") == "title"
mmj = self.proj_match(line["text"]) or line.get("layout_type", "") == "title"
for i in range(st + 1, min(st + 20, len(boxes))):
if (boxes[i]["page_number"] - line["page_number"]) > 0:
break
if not mmj and self._y_dis(
line, boxes[i]) >= 3 * mh and height(line) < 1.5 * mh:
if not mmj and self._y_dis(line, boxes[i]) >= 3 * mh and height(line) < 1.5 * mh:
break
if not usefull(boxes[i]):
continue
if mmj or \
(self._x_dis(boxes[i], line) < pw / 10): \
if mmj or (self._x_dis(boxes[i], line) < pw / 10):
# and abs(width(boxes[i])-width_mean)/max(width(boxes[i]),width_mean)<0.5):
# concat following
dfs(boxes[i], i)
@ -992,11 +901,9 @@ class RAGFlowPdfParser:
boxes.pop(0)
mw = np.mean(widths)
if mj or mw / pw >= 0.35 or mw > 200:
res.append(
"\n".join([c["text"] + self._line_tag(c, ZM) for c in lines]))
res.append("\n".join([c["text"] + self._line_tag(c, ZM) for c in lines]))
else:
logging.debug("REMOVED: " +
"<<".join([c["text"] for c in lines]))
logging.debug("REMOVED: " + "<<".join([c["text"] for c in lines]))
return "\n\n".join(res)
@ -1004,16 +911,14 @@ class RAGFlowPdfParser:
def total_page_number(fnm, binary=None):
try:
with sys.modules[LOCK_KEY_pdfplumber]:
pdf = pdfplumber.open(
fnm) if not binary else pdfplumber.open(BytesIO(binary))
pdf = pdfplumber.open(fnm) if not binary else pdfplumber.open(BytesIO(binary))
total_page = len(pdf.pages)
pdf.close()
return total_page
except Exception:
logging.exception("total_page_number")
def __images__(self, fnm, zoomin=3, page_from=0,
page_to=299, callback=None):
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
self.lefted_chars = []
self.mean_height = []
self.mean_width = []
@ -1025,10 +930,9 @@ class RAGFlowPdfParser:
start = timer()
try:
with sys.modules[LOCK_KEY_pdfplumber]:
with (pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))) as pdf:
with pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm)) as pdf:
self.pdf = pdf
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).annotated for i, p in enumerate(self.pdf.pages[page_from:page_to])]
try:
self.page_chars = [[c for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
@ -1044,11 +948,11 @@ class RAGFlowPdfParser:
self.outlines = []
try:
with (pdf2_read(fnm if isinstance(fnm, str)
else BytesIO(fnm))) as pdf:
with pdf2_read(fnm if isinstance(fnm, str) else BytesIO(fnm)) as pdf:
self.pdf = pdf
outlines = self.pdf.outline
def dfs(arr, depth):
for a in arr:
if isinstance(a, dict):
@ -1065,11 +969,11 @@ class RAGFlowPdfParser:
logging.warning("Miss outlines")
logging.debug("Images converted.")
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(
random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in
range(len(self.page_chars))]
if sum([1 if e else 0 for e in self.is_english]) > len(
self.page_images) / 2:
self.is_english = [
re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i])))))
for i in range(len(self.page_chars))
]
if sum([1 if e else 0 for e in self.is_english]) > len(self.page_images) / 2:
self.is_english = True
else:
self.is_english = False
@ -1077,10 +981,12 @@ class RAGFlowPdfParser:
async def __img_ocr(i, id, img, chars, limiter):
j = 0
while j + 1 < len(chars):
if chars[j]["text"] and chars[j + 1]["text"] \
and re.match(r"[0-9a-zA-Z,.:;!%]+", chars[j]["text"] + chars[j + 1]["text"]) \
and chars[j + 1]["x0"] - chars[j]["x1"] >= min(chars[j + 1]["width"],
chars[j]["width"]) / 2:
if (
chars[j]["text"]
and chars[j + 1]["text"]
and re.match(r"[0-9a-zA-Z,.:;!%]+", chars[j]["text"] + chars[j + 1]["text"])
and chars[j + 1]["x0"] - chars[j]["x1"] >= min(chars[j + 1]["width"], chars[j]["width"]) / 2
):
chars[j]["text"] += " "
j += 1
@ -1096,12 +1002,8 @@ class RAGFlowPdfParser:
async def __img_ocr_launcher():
def __ocr_preprocess():
chars = self.page_chars[i] if not self.is_english else []
self.mean_height.append(
np.median(sorted([c["height"] for c in chars])) if chars else 0
)
self.mean_width.append(
np.median(sorted([c["width"] for c in chars])) if chars else 8
)
self.mean_height.append(np.median(sorted([c["height"] for c in chars])) if chars else 0)
self.mean_width.append(np.median(sorted([c["width"] for c in chars])) if chars else 8)
self.page_cum_height.append(img.size[1] / zoomin)
return chars
@ -1110,8 +1012,7 @@ class RAGFlowPdfParser:
for i, img in enumerate(self.page_images):
chars = __ocr_preprocess()
nursery.start_soon(__img_ocr, i, i % PARALLEL_DEVICES, img, chars,
self.parallel_limiter[i % PARALLEL_DEVICES])
nursery.start_soon(__img_ocr, i, i % PARALLEL_DEVICES, img, chars, self.parallel_limiter[i % PARALLEL_DEVICES])
await trio.sleep(0.1)
else:
for i, img in enumerate(self.page_images):
@ -1124,11 +1025,9 @@ class RAGFlowPdfParser:
logging.info(f"__images__ {len(self.page_images)} pages cost {timer() - start}s")
if not self.is_english and not any(
[c for c in self.page_chars]) and self.boxes:
if not self.is_english and not any([c for c in self.page_chars]) and self.boxes:
bxes = [b for bxs in self.boxes for b in bxs]
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}",
"".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
logging.debug("Is it English:", self.is_english)
@ -1144,8 +1043,7 @@ class RAGFlowPdfParser:
self._text_merge()
self._concat_downward()
self._filter_forpages()
tbls = self._extract_table_figure(
need_image, zoomin, return_html, False)
tbls = self._extract_table_figure(need_image, zoomin, return_html, False)
return self.__filterout_scraps(deepcopy(self.boxes), zoomin), tbls
def parse_into_bboxes(self, fnm, callback=None, zoomin=3):
@ -1179,9 +1077,8 @@ class RAGFlowPdfParser:
import math
pn1, left1, right1, top1, bottom1 = rect1
pn2, left2, right2, top2, bottom2 = rect2
if (right1 >= left2 and right2 >= left1 and
bottom1 >= top2 and bottom2 >= top1):
return 0 + (pn1-pn2)*10000
if right1 >= left2 and right2 >= left1 and bottom1 >= top2 and bottom2 >= top1:
return 0
if right1 < left2:
dx = left2 - right1
elif right2 < left1:
@ -1194,17 +1091,20 @@ class RAGFlowPdfParser:
dy = top1 - bottom2
else:
dy = 0
return math.sqrt(dx*dx + dy*dy) + (pn1-pn2)*10000
return math.sqrt(dx*dx + dy*dy)# + (pn2-pn1)*10000
for (img, txt), poss in tbls_or_figs:
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
dists = [(min_rectangle_distance((pn, left, right, top, bott), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
dists = [(min_rectangle_distance((pn, left, right, top+self.page_cum_height[pn], bott+self.page_cum_height[pn]), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
min_i = np.argmin(dists, axis=0)[0]
min_i, rect = bboxes[dists[min_i][-1]]
if isinstance(txt, list):
txt = "\n".join(txt)
pn, left, right, top, bott = poss[0]
if self.boxes[min_i]["bottom"] < top+self.page_cum_height[pn]:
min_i += 1
self.boxes.insert(min_i, {
"page_number": rect[0], "x0": rect[1], "x1": rect[2], "top": rect[3], "bottom": rect[4], "layout_type": layout_type, "text": txt, "image": img
"page_number": pn+1, "x0": left, "x1": right, "top": top+self.page_cum_height[pn], "bottom": bott+self.page_cum_height[pn], "layout_type": layout_type, "text": txt, "image": img
})
for b in self.boxes:
@ -1225,12 +1125,9 @@ class RAGFlowPdfParser:
def extract_positions(txt):
poss = []
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
pn, left, right, top, bottom = tag.strip(
"#").strip("@").split("\t")
left, right, top, bottom = float(left), float(
right), float(top), float(bottom)
poss.append(([int(p) - 1 for p in pn.split("-")],
left, right, top, bottom))
pn, left, right, top, bottom = tag.strip("#").strip("@").split("\t")
left, right, top, bottom = float(left), float(right), float(top), float(bottom)
poss.append(([int(p) - 1 for p in pn.split("-")], left, right, top, bottom))
return poss
def crop(self, text, ZM=3, need_position=False):
@ -1241,15 +1138,12 @@ class RAGFlowPdfParser:
return None, None
return
max_width = max(
np.max([right - left for (_, left, right, _, _) in poss]), 6)
max_width = max(np.max([right - left for (_, left, right, _, _) in poss]), 6)
GAP = 6
pos = poss[0]
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(
0, pos[3] - 120), max(pos[3] - GAP, 0)))
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(0, pos[3] - 120), max(pos[3] - GAP, 0)))
pos = poss[-1]
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + GAP),
min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + 120)))
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + GAP), min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + 120)))
positions = []
for ii, (pns, left, right, top, bottom) in enumerate(poss):
@ -1257,28 +1151,14 @@ class RAGFlowPdfParser:
bottom *= ZM
for pn in pns[1:]:
bottom += self.page_images[pn - 1].size[1]
imgs.append(
self.page_images[pns[0]].crop((left * ZM, top * ZM,
right *
ZM, min(
bottom, self.page_images[pns[0]].size[1])
))
)
imgs.append(self.page_images[pns[0]].crop((left * ZM, top * ZM, right * ZM, min(bottom, self.page_images[pns[0]].size[1]))))
if 0 < ii < len(poss) - 1:
positions.append((pns[0] + self.page_from, left, right, top, min(
bottom, self.page_images[pns[0]].size[1]) / ZM))
positions.append((pns[0] + self.page_from, left, right, top, min(bottom, self.page_images[pns[0]].size[1]) / ZM))
bottom -= self.page_images[pns[0]].size[1]
for pn in pns[1:]:
imgs.append(
self.page_images[pn].crop((left * ZM, 0,
right * ZM,
min(bottom,
self.page_images[pn].size[1])
))
)
imgs.append(self.page_images[pn].crop((left * ZM, 0, right * ZM, min(bottom, self.page_images[pn].size[1]))))
if 0 < ii < len(poss) - 1:
positions.append((pn + self.page_from, left, right, 0, min(
bottom, self.page_images[pn].size[1]) / ZM))
positions.append((pn + self.page_from, left, right, 0, min(bottom, self.page_images[pn].size[1]) / ZM))
bottom -= self.page_images[pn].size[1]
if not imgs:
@ -1290,14 +1170,12 @@ class RAGFlowPdfParser:
height += img.size[1] + GAP
height = int(height)
width = int(np.max([i.size[0] for i in imgs]))
pic = Image.new("RGB",
(width, height),
(245, 245, 245))
pic = Image.new("RGB", (width, height), (245, 245, 245))
height = 0
for ii, img in enumerate(imgs):
if ii == 0 or ii + 1 == len(imgs):
img = img.convert('RGBA')
overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
img = img.convert("RGBA")
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
overlay.putalpha(128)
img = Image.alpha_composite(img, overlay).convert("RGB")
pic.paste(img, (0, int(height)))
@ -1312,14 +1190,12 @@ class RAGFlowPdfParser:
pn = bx["page_number"]
top = bx["top"] - self.page_cum_height[pn - 1]
bott = bx["bottom"] - self.page_cum_height[pn - 1]
poss.append((pn, bx["x0"], bx["x1"], top, min(
bott, self.page_images[pn - 1].size[1] / ZM)))
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
while bott * ZM > self.page_images[pn - 1].size[1]:
bott -= self.page_images[pn - 1].size[1] / ZM
top = 0
pn += 1
poss.append((pn, bx["x0"], bx["x1"], top, min(
bott, self.page_images[pn - 1].size[1] / ZM)))
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
return poss
@ -1328,9 +1204,7 @@ class PlainParser:
self.outlines = []
lines = []
try:
self.pdf = pdf2_read(
filename if isinstance(
filename, str) else BytesIO(filename))
self.pdf = pdf2_read(filename if isinstance(filename, str) else BytesIO(filename))
for page in self.pdf.pages[from_page:to_page]:
lines.extend([t for t in page.extract_text().split("\n")])
@ -1367,10 +1241,8 @@ class VisionParser(RAGFlowPdfParser):
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
try:
with sys.modules[LOCK_KEY_pdfplumber]:
self.pdf = pdfplumber.open(fnm) if isinstance(
fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
self.pdf = pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in enumerate(self.pdf.pages[page_from:page_to])]
self.total_page = len(self.pdf.pages)
except Exception:
self.page_images = None
@ -1401,7 +1273,7 @@ class VisionParser(RAGFlowPdfParser):
callback=callback,
)
if kwargs.get("callback"):
kwargs["callback"](idx*1./len(self.page_images), f"Processed: {idx+1}/{len(self.page_images)}")
kwargs["callback"](idx * 1.0 / len(self.page_images), f"Processed: {idx + 1}/{len(self.page_images)}")
if text:
width, height = self.page_images[idx].size

View File

@ -16,24 +16,28 @@
import io
import sys
import threading
import pdfplumber
from .ocr import OCR
from .recognizer import Recognizer
from .layout_recognizer import AscendLayoutRecognizer
from .layout_recognizer import LayoutRecognizer4YOLOv10 as LayoutRecognizer
from .table_structure_recognizer import TableStructureRecognizer
LOCK_KEY_pdfplumber = "global_shared_lock_pdfplumber"
if LOCK_KEY_pdfplumber not in sys.modules:
sys.modules[LOCK_KEY_pdfplumber] = threading.Lock()
def init_in_out(args):
from PIL import Image
import os
import traceback
from PIL import Image
from api.utils.file_utils import traversal_files
images = []
outputs = []
@ -44,8 +48,7 @@ def init_in_out(args):
nonlocal outputs, images
with sys.modules[LOCK_KEY_pdfplumber]:
pdf = pdfplumber.open(fnm)
images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(pdf.pages)]
images = [p.to_image(resolution=72 * zoomin).annotated for i, p in enumerate(pdf.pages)]
for i, page in enumerate(images):
outputs.append(os.path.split(fnm)[-1] + f"_{i}.jpg")
@ -57,10 +60,10 @@ def init_in_out(args):
pdf_pages(fnm)
return
try:
fp = open(fnm, 'rb')
fp = open(fnm, "rb")
binary = fp.read()
fp.close()
images.append(Image.open(io.BytesIO(binary)).convert('RGB'))
images.append(Image.open(io.BytesIO(binary)).convert("RGB"))
outputs.append(os.path.split(fnm)[-1])
except Exception:
traceback.print_exc()
@ -81,6 +84,7 @@ __all__ = [
"OCR",
"Recognizer",
"LayoutRecognizer",
"AscendLayoutRecognizer",
"TableStructureRecognizer",
"init_in_out",
]

View File

@ -14,6 +14,8 @@
# limitations under the License.
#
import logging
import math
import os
import re
from collections import Counter
@ -45,28 +47,22 @@ class LayoutRecognizer(Recognizer):
def __init__(self, domain):
try:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
super().__init__(self.labels, domain, model_dir)
except Exception:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc", local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), local_dir_use_symlinks=False)
super().__init__(self.labels, domain, model_dir)
self.garbage_layouts = ["footer", "header", "reference"]
self.client = None
if os.environ.get("TENSORRT_DLA_SVR"):
from deepdoc.vision.dla_cli import DLAClient
self.client = DLAClient(os.environ["TENSORRT_DLA_SVR"])
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True):
def __is_garbage(b):
patt = [r"^•+$", "^[0-9]{1,2} / ?[0-9]{1,2}$",
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
"\\(cid *: *[0-9]+ *\\)"
]
patt = [r"^•+$", "^[0-9]{1,2} / ?[0-9]{1,2}$", r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}", "\\(cid *: *[0-9]+ *\\)"]
return any([re.search(p, b["text"]) for p in patt])
if self.client:
@ -82,18 +78,23 @@ class LayoutRecognizer(Recognizer):
page_layout = []
for pn, lts in enumerate(layouts):
bxs = ocr_res[pn]
lts = [{"type": b["type"],
lts = [
{
"type": b["type"],
"score": float(b["score"]),
"x0": b["bbox"][0] / scale_factor, "x1": b["bbox"][2] / scale_factor,
"top": b["bbox"][1] / scale_factor, "bottom": b["bbox"][-1] / scale_factor,
"x0": b["bbox"][0] / scale_factor,
"x1": b["bbox"][2] / scale_factor,
"top": b["bbox"][1] / scale_factor,
"bottom": b["bbox"][-1] / scale_factor,
"page_number": pn,
} for b in lts if float(b["score"]) >= 0.4 or b["type"] not in self.garbage_layouts]
lts = self.sort_Y_firstly(lts, np.mean(
[lt["bottom"] - lt["top"] for lt in lts]) / 2)
}
for b in lts
if float(b["score"]) >= 0.4 or b["type"] not in self.garbage_layouts
]
lts = self.sort_Y_firstly(lts, np.mean([lt["bottom"] - lt["top"] for lt in lts]) / 2)
lts = self.layouts_cleanup(bxs, lts)
page_layout.append(lts)
# Tag layout type, layouts are ready
def findLayout(ty):
nonlocal bxs, lts, self
lts_ = [lt for lt in lts if lt["type"] == ty]
@ -106,21 +107,17 @@ class LayoutRecognizer(Recognizer):
bxs.pop(i)
continue
ii = self.find_overlapped_with_threshold(bxs[i], lts_,
thr=0.4)
if ii is None: # belong to nothing
ii = self.find_overlapped_with_threshold(bxs[i], lts_, thr=0.4)
if ii is None:
bxs[i]["layout_type"] = ""
i += 1
continue
lts_[ii]["visited"] = True
keep_feats = [
lts_[
ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1] * 0.9 / scale_factor,
lts_[
ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1] * 0.1 / scale_factor,
lts_[ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1] * 0.9 / scale_factor,
lts_[ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1] * 0.1 / scale_factor,
]
if drop and lts_[
ii]["type"] in self.garbage_layouts and not any(keep_feats):
if drop and lts_[ii]["type"] in self.garbage_layouts and not any(keep_feats):
if lts_[ii]["type"] not in garbages:
garbages[lts_[ii]["type"]] = []
garbages[lts_[ii]["type"]].append(bxs[i]["text"])
@ -128,17 +125,14 @@ class LayoutRecognizer(Recognizer):
continue
bxs[i]["layoutno"] = f"{ty}-{ii}"
bxs[i]["layout_type"] = lts_[ii]["type"] if lts_[
ii]["type"] != "equation" else "figure"
bxs[i]["layout_type"] = lts_[ii]["type"] if lts_[ii]["type"] != "equation" else "figure"
i += 1
for lt in ["footer", "header", "reference", "figure caption",
"table caption", "title", "table", "text", "figure", "equation"]:
for lt in ["footer", "header", "reference", "figure caption", "table caption", "title", "table", "text", "figure", "equation"]:
findLayout(lt)
# add box to figure layouts which has not text box
for i, lt in enumerate(
[lt for lt in lts if lt["type"] in ["figure", "equation"]]):
for i, lt in enumerate([lt for lt in lts if lt["type"] in ["figure", "equation"]]):
if lt.get("visited"):
continue
lt = deepcopy(lt)
@ -206,9 +200,7 @@ class LayoutRecognizer4YOLOv10(LayoutRecognizer):
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
img = cv2.copyMakeBorder(
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
) # add border
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)) # add border
img /= 255.0
img = img.transpose(2, 0, 1)
img = img[np.newaxis, :, :, :].astype(np.float32)
@ -230,8 +222,7 @@ class LayoutRecognizer4YOLOv10(LayoutRecognizer):
boxes[:, 2] -= inputs["scale_factor"][2]
boxes[:, 1] -= inputs["scale_factor"][3]
boxes[:, 3] -= inputs["scale_factor"][3]
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0],
inputs["scale_factor"][1]])
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
boxes = np.multiply(boxes, input_shape, dtype=np.float32)
unique_class_ids = np.unique(class_ids)
@ -243,8 +234,223 @@ class LayoutRecognizer4YOLOv10(LayoutRecognizer):
class_keep_boxes = nms(class_boxes, class_scores, 0.45)
indices.extend(class_indices[class_keep_boxes])
return [{
"type": self.label_list[class_ids[i]].lower(),
"bbox": [float(t) for t in boxes[i].tolist()],
"score": float(scores[i])
} for i in indices]
return [{"type": self.label_list[class_ids[i]].lower(), "bbox": [float(t) for t in boxes[i].tolist()], "score": float(scores[i])} for i in indices]
class AscendLayoutRecognizer(Recognizer):
labels = [
"title",
"Text",
"Reference",
"Figure",
"Figure caption",
"Table",
"Table caption",
"Table caption",
"Equation",
"Figure caption",
]
def __init__(self, domain):
from ais_bench.infer.interface import InferSession
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
model_file_path = os.path.join(model_dir, domain + ".om")
if not os.path.exists(model_file_path):
raise ValueError(f"Model file not found: {model_file_path}")
device_id = int(os.getenv("ASCEND_LAYOUT_RECOGNIZER_DEVICE_ID", 0))
self.session = InferSession(device_id=device_id, model_path=model_file_path)
self.input_shape = self.session.get_inputs()[0].shape[2:4] # H,W
self.garbage_layouts = ["footer", "header", "reference"]
def preprocess(self, image_list):
inputs = []
H, W = self.input_shape
for img in image_list:
h, w = img.shape[:2]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32)
r = min(H / h, W / w)
new_unpad = (int(round(w * r)), int(round(h * r)))
dw, dh = (W - new_unpad[0]) / 2.0, (H - new_unpad[1]) / 2.0
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
img /= 255.0
img = img.transpose(2, 0, 1)[np.newaxis, :, :, :].astype(np.float32)
inputs.append(
{
"image": img,
"scale_factor": [w / new_unpad[0], h / new_unpad[1]],
"pad": [dw, dh],
"orig_shape": [h, w],
}
)
return inputs
def postprocess(self, boxes, inputs, thr=0.25):
arr = np.squeeze(boxes)
if arr.ndim == 1:
arr = arr.reshape(1, -1)
results = []
if arr.shape[1] == 6:
# [x1,y1,x2,y2,score,cls]
m = arr[:, 4] >= thr
arr = arr[m]
if arr.size == 0:
return []
xyxy = arr[:, :4].astype(np.float32)
scores = arr[:, 4].astype(np.float32)
cls_ids = arr[:, 5].astype(np.int32)
if "pad" in inputs:
dw, dh = inputs["pad"]
sx, sy = inputs["scale_factor"]
xyxy[:, [0, 2]] -= dw
xyxy[:, [1, 3]] -= dh
xyxy *= np.array([sx, sy, sx, sy], dtype=np.float32)
else:
# backup
sx, sy = inputs["scale_factor"]
xyxy *= np.array([sx, sy, sx, sy], dtype=np.float32)
keep_indices = []
for c in np.unique(cls_ids):
idx = np.where(cls_ids == c)[0]
k = nms(xyxy[idx], scores[idx], 0.45)
keep_indices.extend(idx[k])
for i in keep_indices:
cid = int(cls_ids[i])
if 0 <= cid < len(self.labels):
results.append({"type": self.labels[cid].lower(), "bbox": [float(t) for t in xyxy[i].tolist()], "score": float(scores[i])})
return results
raise ValueError(f"Unexpected output shape: {arr.shape}")
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True):
import re
from collections import Counter
assert len(image_list) == len(ocr_res)
images = [np.array(im) if not isinstance(im, np.ndarray) else im for im in image_list]
layouts_all_pages = [] # list of list[{"type","score","bbox":[x1,y1,x2,y2]}]
conf_thr = max(thr, 0.08)
batch_loop_cnt = math.ceil(float(len(images)) / batch_size)
for bi in range(batch_loop_cnt):
s = bi * batch_size
e = min((bi + 1) * batch_size, len(images))
batch_images = images[s:e]
inputs_list = self.preprocess(batch_images)
logging.debug("preprocess done")
for ins in inputs_list:
feeds = [ins["image"]]
out_list = self.session.infer(feeds=feeds, mode="static")
for out in out_list:
lts = self.postprocess(out, ins, conf_thr)
page_lts = []
for b in lts:
if float(b["score"]) >= 0.4 or b["type"] not in self.garbage_layouts:
x0, y0, x1, y1 = b["bbox"]
page_lts.append(
{
"type": b["type"],
"score": float(b["score"]),
"x0": float(x0) / scale_factor,
"x1": float(x1) / scale_factor,
"top": float(y0) / scale_factor,
"bottom": float(y1) / scale_factor,
"page_number": len(layouts_all_pages),
}
)
layouts_all_pages.append(page_lts)
def _is_garbage_text(box):
patt = [r"^•+$", r"^[0-9]{1,2} / ?[0-9]{1,2}$", r"^[0-9]{1,2} of [0-9]{1,2}$", r"^http://[^ ]{12,}", r"\(cid *: *[0-9]+ *\)"]
return any(re.search(p, box.get("text", "")) for p in patt)
boxes_out = []
page_layout = []
garbages = {}
for pn, lts in enumerate(layouts_all_pages):
if lts:
avg_h = np.mean([lt["bottom"] - lt["top"] for lt in lts])
lts = self.sort_Y_firstly(lts, avg_h / 2 if avg_h > 0 else 0)
bxs = ocr_res[pn]
lts = self.layouts_cleanup(bxs, lts)
page_layout.append(lts)
def _tag_layout(ty):
nonlocal bxs, lts
lts_of_ty = [lt for lt in lts if lt["type"] == ty]
i = 0
while i < len(bxs):
if bxs[i].get("layout_type"):
i += 1
continue
if _is_garbage_text(bxs[i]):
bxs.pop(i)
continue
ii = self.find_overlapped_with_threshold(bxs[i], lts_of_ty, thr=0.4)
if ii is None:
bxs[i]["layout_type"] = ""
i += 1
continue
lts_of_ty[ii]["visited"] = True
keep_feats = [
lts_of_ty[ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].shape[0] * 0.9 / scale_factor,
lts_of_ty[ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].shape[0] * 0.1 / scale_factor,
]
if drop and lts_of_ty[ii]["type"] in self.garbage_layouts and not any(keep_feats):
garbages.setdefault(lts_of_ty[ii]["type"], []).append(bxs[i].get("text", ""))
bxs.pop(i)
continue
bxs[i]["layoutno"] = f"{ty}-{ii}"
bxs[i]["layout_type"] = lts_of_ty[ii]["type"] if lts_of_ty[ii]["type"] != "equation" else "figure"
i += 1
for ty in ["footer", "header", "reference", "figure caption", "table caption", "title", "table", "text", "figure", "equation"]:
_tag_layout(ty)
figs = [lt for lt in lts if lt["type"] in ["figure", "equation"]]
for i, lt in enumerate(figs):
if lt.get("visited"):
continue
lt = deepcopy(lt)
lt.pop("type", None)
lt["text"] = ""
lt["layout_type"] = "figure"
lt["layoutno"] = f"figure-{i}"
bxs.append(lt)
boxes_out.extend(bxs)
garbag_set = set()
for k, lst in garbages.items():
cnt = Counter(lst)
for g, c in cnt.items():
if c > 1:
garbag_set.add(g)
ocr_res_new = [b for b in boxes_out if b["text"].strip() not in garbag_set]
return ocr_res_new, page_layout

View File

@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import gc
import logging
import copy
import time
@ -348,6 +348,13 @@ class TextRecognizer:
return img
def close(self):
# close session and release manually
logging.info('Close TextRecognizer.')
if hasattr(self, "predictor"):
del self.predictor
gc.collect()
def __call__(self, img_list):
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
@ -395,6 +402,9 @@ class TextRecognizer:
return rec_res, time.time() - st
def __del__(self):
self.close()
class TextDetector:
def __init__(self, model_dir, device_id: int | None = None):
@ -479,6 +489,12 @@ class TextDetector:
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def close(self):
logging.info("Close TextDetector.")
if hasattr(self, "predictor"):
del self.predictor
gc.collect()
def __call__(self, img):
ori_im = img.copy()
data = {'image': img}
@ -508,6 +524,9 @@ class TextDetector:
return dt_boxes, time.time() - st
def __del__(self):
self.close()
class OCR:
def __init__(self, model_dir=None):

View File

@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import gc
import logging
import os
import math
@ -406,6 +406,12 @@ class Recognizer:
"score": float(scores[i])
} for i in indices]
def close(self):
logging.info("Close recognizer.")
if hasattr(self, "ort_sess"):
del self.ort_sess
gc.collect()
def __call__(self, image_list, thr=0.7, batch_size=16):
res = []
images = []
@ -430,5 +436,7 @@ class Recognizer:
return res
def __del__(self):
self.close()

View File

@ -23,6 +23,7 @@ from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from rag.nlp import rag_tokenizer
from .recognizer import Recognizer
@ -38,31 +39,49 @@ class TableStructureRecognizer(Recognizer):
def __init__(self):
try:
super().__init__(self.labels, "tsr", os.path.join(
get_project_base_directory(),
"rag/res/deepdoc"))
super().__init__(self.labels, "tsr", os.path.join(get_project_base_directory(), "rag/res/deepdoc"))
except Exception:
super().__init__(self.labels, "tsr", snapshot_download(repo_id="InfiniFlow/deepdoc",
super().__init__(
self.labels,
"tsr",
snapshot_download(
repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False))
local_dir_use_symlinks=False,
),
)
def __call__(self, images, thr=0.2):
table_structure_recognizer_type = os.getenv("TABLE_STRUCTURE_RECOGNIZER_TYPE", "onnx").lower()
if table_structure_recognizer_type not in ["onnx", "ascend"]:
raise RuntimeError("Unsupported table structure recognizer type.")
if table_structure_recognizer_type == "onnx":
logging.debug("Using Onnx table structure recognizer", flush=True)
tbls = super().__call__(images, thr)
else: # ascend
logging.debug("Using Ascend table structure recognizer", flush=True)
tbls = self._run_ascend_tsr(images, thr)
res = []
# align left&right for rows, align top&bottom for columns
for tbl in tbls:
lts = [{"label": b["type"],
lts = [
{
"label": b["type"],
"score": b["score"],
"x0": b["bbox"][0], "x1": b["bbox"][2],
"top": b["bbox"][1], "bottom": b["bbox"][-1]
} for b in tbl]
"x0": b["bbox"][0],
"x1": b["bbox"][2],
"top": b["bbox"][1],
"bottom": b["bbox"][-1],
}
for b in tbl
]
if not lts:
continue
left = [b["x0"] for b in lts if b["label"].find(
"row") > 0 or b["label"].find("header") > 0]
right = [b["x1"] for b in lts if b["label"].find(
"row") > 0 or b["label"].find("header") > 0]
left = [b["x0"] for b in lts if b["label"].find("row") > 0 or b["label"].find("header") > 0]
right = [b["x1"] for b in lts if b["label"].find("row") > 0 or b["label"].find("header") > 0]
if not left:
continue
left = np.mean(left) if len(left) > 4 else np.min(left)
@ -93,11 +112,8 @@ class TableStructureRecognizer(Recognizer):
@staticmethod
def is_caption(bx):
patt = [
r"[图表]+[ 0-9:]{2,}"
]
if any([re.match(p, bx["text"].strip()) for p in patt]) \
or bx.get("layout_type", "").find("caption") >= 0:
patt = [r"[图表]+[ 0-9:]{2,}"]
if any([re.match(p, bx["text"].strip()) for p in patt]) or bx.get("layout_type", "").find("caption") >= 0:
return True
return False
@ -115,7 +131,7 @@ class TableStructureRecognizer(Recognizer):
(r"^[0-9A-Z/\._~-]+$", "Ca"),
(r"^[A-Z]*[a-z' -]+$", "En"),
(r"^[0-9.,+-]+[0-9A-Za-z/$¥%<>()' -]+$", "NE"),
(r"^.{1}$", "Sg")
(r"^.{1}$", "Sg"),
]
for p, n in patt:
if re.search(p, b["text"].strip()):
@ -163,14 +179,12 @@ class TableStructureRecognizer(Recognizer):
for b in boxes[1:]:
b["rn"] = len(rows) - 1
lst_r = rows[-1]
if lst_r[-1].get("R", "") != b.get("R", "") \
or (b["top"] >= btm - 3 and lst_r[-1].get("R", "-1") != b.get("R", "-2")
): # new row
if lst_r[-1].get("R", "") != b.get("R", "") or (b["top"] >= btm - 3 and lst_r[-1].get("R", "-1") != b.get("R", "-2")): # new row
btm = b["bottom"]
b["rn"] += 1
rows.append([b])
continue
btm = (btm + b["bottom"]) / 2.
btm = (btm + b["bottom"]) / 2.0
rows[-1].append(b)
colwm = [b["C_right"] - b["C_left"] for b in boxes if "C" in b]
@ -186,14 +200,14 @@ class TableStructureRecognizer(Recognizer):
for b in boxes[1:]:
b["cn"] = len(cols) - 1
lst_c = cols[-1]
if (int(b.get("C", "1")) - int(lst_c[-1].get("C", "1")) == 1 and b["page_number"] == lst_c[-1][
"page_number"]) \
or (b["x0"] >= right and lst_c[-1].get("C", "-1") != b.get("C", "-2")): # new col
if (int(b.get("C", "1")) - int(lst_c[-1].get("C", "1")) == 1 and b["page_number"] == lst_c[-1]["page_number"]) or (
b["x0"] >= right and lst_c[-1].get("C", "-1") != b.get("C", "-2")
): # new col
right = b["x1"]
b["cn"] += 1
cols.append([b])
continue
right = (right + b["x1"]) / 2.
right = (right + b["x1"]) / 2.0
cols[-1].append(b)
tbl = [[[] for _ in range(len(cols))] for _ in range(len(rows))]
@ -214,10 +228,8 @@ class TableStructureRecognizer(Recognizer):
if e > 1:
j += 1
continue
f = (j > 0 and tbl[ii][j - 1] and tbl[ii]
[j - 1][0].get("text")) or j == 0
ff = (j + 1 < len(tbl[ii]) and tbl[ii][j + 1] and tbl[ii]
[j + 1][0].get("text")) or j + 1 >= len(tbl[ii])
f = (j > 0 and tbl[ii][j - 1] and tbl[ii][j - 1][0].get("text")) or j == 0
ff = (j + 1 < len(tbl[ii]) and tbl[ii][j + 1] and tbl[ii][j + 1][0].get("text")) or j + 1 >= len(tbl[ii])
if f and ff:
j += 1
continue
@ -228,13 +240,11 @@ class TableStructureRecognizer(Recognizer):
if j > 0 and not f:
for i in range(len(tbl)):
if tbl[i][j - 1]:
left = min(left, np.min(
[bx["x0"] - a["x1"] for a in tbl[i][j - 1]]))
left = min(left, np.min([bx["x0"] - a["x1"] for a in tbl[i][j - 1]]))
if j + 1 < len(tbl[0]) and not ff:
for i in range(len(tbl)):
if tbl[i][j + 1]:
right = min(right, np.min(
[a["x0"] - bx["x1"] for a in tbl[i][j + 1]]))
right = min(right, np.min([a["x0"] - bx["x1"] for a in tbl[i][j + 1]]))
assert left < 100000 or right < 100000
if left < right:
for jj in range(j, len(tbl[0])):
@ -260,8 +270,7 @@ class TableStructureRecognizer(Recognizer):
for i in range(len(tbl)):
tbl[i].pop(j)
cols.pop(j)
assert len(cols) == len(tbl[0]), "Column NO. miss matched: %d vs %d" % (
len(cols), len(tbl[0]))
assert len(cols) == len(tbl[0]), "Column NO. miss matched: %d vs %d" % (len(cols), len(tbl[0]))
if len(cols) >= 4:
# remove single in row
@ -277,10 +286,8 @@ class TableStructureRecognizer(Recognizer):
if e > 1:
i += 1
continue
f = (i > 0 and tbl[i - 1][jj] and tbl[i - 1]
[jj][0].get("text")) or i == 0
ff = (i + 1 < len(tbl) and tbl[i + 1][jj] and tbl[i + 1]
[jj][0].get("text")) or i + 1 >= len(tbl)
f = (i > 0 and tbl[i - 1][jj] and tbl[i - 1][jj][0].get("text")) or i == 0
ff = (i + 1 < len(tbl) and tbl[i + 1][jj] and tbl[i + 1][jj][0].get("text")) or i + 1 >= len(tbl)
if f and ff:
i += 1
continue
@ -292,13 +299,11 @@ class TableStructureRecognizer(Recognizer):
if i > 0 and not f:
for j in range(len(tbl[i - 1])):
if tbl[i - 1][j]:
up = min(up, np.min(
[bx["top"] - a["bottom"] for a in tbl[i - 1][j]]))
up = min(up, np.min([bx["top"] - a["bottom"] for a in tbl[i - 1][j]]))
if i + 1 < len(tbl) and not ff:
for j in range(len(tbl[i + 1])):
if tbl[i + 1][j]:
down = min(down, np.min(
[a["top"] - bx["bottom"] for a in tbl[i + 1][j]]))
down = min(down, np.min([a["top"] - bx["bottom"] for a in tbl[i + 1][j]]))
assert up < 100000 or down < 100000
if up < down:
for ii in range(i, len(tbl)):
@ -333,22 +338,15 @@ class TableStructureRecognizer(Recognizer):
cnt += 1
if max_type == "Nu" and arr[0]["btype"] == "Nu":
continue
if any([a.get("H") for a in arr]) \
or (max_type == "Nu" and arr[0]["btype"] != "Nu"):
if any([a.get("H") for a in arr]) or (max_type == "Nu" and arr[0]["btype"] != "Nu"):
h += 1
if h / cnt > 0.5:
hdset.add(i)
if html:
return TableStructureRecognizer.__html_table(cap, hdset,
TableStructureRecognizer.__cal_spans(boxes, rows,
cols, tbl, True)
)
return TableStructureRecognizer.__html_table(cap, hdset, TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl, True))
return TableStructureRecognizer.__desc_table(cap, hdset,
TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl,
False),
is_english)
return TableStructureRecognizer.__desc_table(cap, hdset, TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl, False), is_english)
@staticmethod
def __html_table(cap, hdset, tbl):
@ -367,10 +365,8 @@ class TableStructureRecognizer(Recognizer):
continue
txt = ""
if arr:
h = min(np.min([c["bottom"] - c["top"]
for c in arr]) / 2, 10)
txt = " ".join([c["text"]
for c in Recognizer.sort_Y_firstly(arr, h)])
h = min(np.min([c["bottom"] - c["top"] for c in arr]) / 2, 10)
txt = " ".join([c["text"] for c in Recognizer.sort_Y_firstly(arr, h)])
txts.append(txt)
sp = ""
if arr[0].get("colspan"):
@ -436,15 +432,11 @@ class TableStructureRecognizer(Recognizer):
if headers[j][k].find(headers[j - 1][k]) >= 0:
continue
if len(headers[j][k]) > len(headers[j - 1][k]):
headers[j][k] += (de if headers[j][k]
else "") + headers[j - 1][k]
headers[j][k] += (de if headers[j][k] else "") + headers[j - 1][k]
else:
headers[j][k] = headers[j - 1][k] \
+ (de if headers[j - 1][k] else "") \
+ headers[j][k]
headers[j][k] = headers[j - 1][k] + (de if headers[j - 1][k] else "") + headers[j][k]
logging.debug(
f">>>>>>>>>>>>>>>>>{cap}SIZE:{rowno}X{clmno} Header: {hdr_rowno}")
logging.debug(f">>>>>>>>>>>>>>>>>{cap}SIZE:{rowno}X{clmno} Header: {hdr_rowno}")
row_txt = []
for i in range(rowno):
if i in hdr_rowno:
@ -503,14 +495,10 @@ class TableStructureRecognizer(Recognizer):
@staticmethod
def __cal_spans(boxes, rows, cols, tbl, html=True):
# caculate span
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln])
for cln in cols]
crgt = [np.mean([c.get("C_right", c["x1"]) for c in cln])
for cln in cols]
rtop = [np.mean([c.get("R_top", c["top"]) for c in row])
for row in rows]
rbtm = [np.mean([c.get("R_btm", c["bottom"])
for c in row]) for row in rows]
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln]) for cln in cols]
crgt = [np.mean([c.get("C_right", c["x1"]) for c in cln]) for cln in cols]
rtop = [np.mean([c.get("R_top", c["top"]) for c in row]) for row in rows]
rbtm = [np.mean([c.get("R_btm", c["bottom"]) for c in row]) for row in rows]
for b in boxes:
if "SP" not in b:
continue
@ -585,3 +573,40 @@ class TableStructureRecognizer(Recognizer):
tbl[rowspan[0]][colspan[0]] = arr
return tbl
def _run_ascend_tsr(self, image_list, thr=0.2, batch_size=16):
import math
from ais_bench.infer.interface import InferSession
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
model_file_path = os.path.join(model_dir, "tsr.om")
if not os.path.exists(model_file_path):
raise ValueError(f"Model file not found: {model_file_path}")
device_id = int(os.getenv("ASCEND_LAYOUT_RECOGNIZER_DEVICE_ID", 0))
session = InferSession(device_id=device_id, model_path=model_file_path)
images = [np.array(im) if not isinstance(im, np.ndarray) else im for im in image_list]
results = []
conf_thr = max(thr, 0.08)
batch_loop_cnt = math.ceil(float(len(images)) / batch_size)
for bi in range(batch_loop_cnt):
s = bi * batch_size
e = min((bi + 1) * batch_size, len(images))
batch_images = images[s:e]
inputs_list = self.preprocess(batch_images)
for ins in inputs_list:
feeds = []
if "image" in ins:
feeds.append(ins["image"])
else:
feeds.append(ins[self.input_names[0]])
output_list = session.infer(feeds=feeds, mode="static")
bb = self.postprocess(output_list, ins, conf_thr)
results.append(bb)
return results

View File

@ -26,6 +26,84 @@ An **Agent** component is essential when you need the LLM to assist with summari
2. If your Agent involves dataset retrieval, ensure you [have properly configured your target knowledge base(s)](../../dataset/configure_knowledge_base.md).
## Quickstart
### 1. Click on an **Agent** component to show its configuration panel
The corresponding configuration panel appears to the right of the canvas. Use this panel to define and fine-tune the **Agent** component's behavior.
### 2. Select your model
Click **Model**, and select a chat model from the dropdown menu.
:::tip NOTE
If no model appears, check if your have added a chat model on the **Model providers** page.
:::
### 3. Update system prompt (Optional)
The system prompt typically defines your model's role. You can either keep the system prompt as is or customize it to override the default.
### 4. Update user prompt
The user prompt typically defines your model's task. You will find the `sys.query` variable auto-populated. Type `/` or click **(x)** to view or add variables.
In this quickstart, we assume your **Agent** component is used standalone (without tools or sub-Agents below), then you may also need to specify retrieved chunks using the `formalized_content` variable:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/standalone_user_prompt_variable.jpg)
### 5. Skip Tools and Agent
The **+ Add tools** and **+ Add agent** sections are used *only* when you need to configure your **Agent** component as a planner (with tools or sub-Agents beneath). In this quickstart, we assume your **Agent** component is used standalone (without tools or sub-Agents beneath).
### 6. Choose the next component
When necessary, click the **+** button on the **Agent** component to choose the next component in the worflow from the dropdown list.
## Connect to an MCP server as a client
:::danger IMPORTANT
In this section, we assume your **Agent** will be configured as a planner, with a Tavily tool beneath it.
:::
### 1. Navigate to the MCP configuration page
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/mcp_page.jpg)
### 2. Configure your Tavily MCP server
Update your MCP server's name, URL (including the API key), server type, and other necessary settings. When configured correctly, the available tools will be displayed.
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/edit_mcp_server.jpg)
### 3. Navigate to your Agent's editing page
### 4. Connect to your MCP server
1. Click **+ Add tools**:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/add_tools.jpg)
2. Click **MCP** to show the available MCP servers.
3. Select your MCP server:
*The target MCP server appears below your Agent component, and your Agent will autonomously decide when to invoke the available tools it offers.*
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/choose_tavily_mcp_server.jpg)
### 5. Update system prompt to specify trigger conditions (Optional)
To ensure reliable tool calls, you may specify within the system prompt which tasks should trigger each tool call.
### 6. View the availabe tools of your MCP server
On the canvas, click the newly-populated Tavily server to view and select its available tools:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/tavily_mcp_server.jpg)
## Configurations
### Model
@ -69,7 +147,7 @@ An **Agent** component relies on keys (variables) to specify its data inputs. It
#### Advanced usage
From v0.20.5 onwards, four framework-level prompt blocks are available in the **System prompt** field. Type `/` or click **(x)** to view them; they appear under the **Framework** entry in the dropdown menu.
From v0.20.5 onwards, four framework-level prompt blocks are available in the **System prompt** field, enabling you to customize and *override* prompts at the framework level. Type `/` or click **(x)** to view them; they appear under the **Framework** entry in the dropdown menu.
- `task_analysis` prompt block
- This block is responsible for analyzing tasks — either a user task or a task assigned by the lead Agent when the **Agent** component is acting as a Sub-Agent.
@ -100,6 +178,12 @@ From v0.20.5 onwards, four framework-level prompt blocks are available in the **
- `citation_guidelines` prompt block
- Reference design: [citation_prompt.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/citation_prompt.md)
*The screenshots below show the framework prompt blocks available to an **Agent** component, both as a standalone and as a planner (with a Tavily tool below):*
![standalone](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/standalone_agent_framework_block.jpg)
![planner](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/planner_agent_framework_blocks.jpg)
### User prompt
The user-defined prompt. Defaults to `sys.query`, the user query. As a general rule, when using the **Agent** component as a standalone module (not as a planner), you usually need to specify the corresponding **Retrieval** components output variable (`formalized_content`) here as part of the input to the LLM.
@ -129,7 +213,7 @@ Defines the maximum number of attempts the agent will make to retry a failed tas
The waiting period in seconds that the agent observes before retrying a failed task, helping to prevent immediate repeated attempts and allowing system conditions to improve. Defaults to 1 second.
### Max rounds
### Max reflection rounds
Defines the maximum number reflection rounds of the selected chat model. Defaults to 1 round.

View File

@ -0,0 +1,79 @@
---
sidebar_position: 25
slug: /execute_sql
---
# Execute SQL tool
A tool that execute SQL queries on a specified relational database.
---
The **Execute SQL** tool enables you to connect to a relational database and run SQL queries, whether entered directly or generated by the systems Text2SQL capability via an **Agent** component.
## Prerequisites
- A database instance properly configured and running.
- The database must be one of the following types:
- MySQL
- PostgreSQL
- MariaDB
- Microsoft SQL Server
## Examples
You can pair an **Agent** component with the **Execute SQL** tool, with the **Agent** generating SQL statements and the **Execute SQL** tool handling database connection and query execution. An example of this setup can be found in the **SQL Assistant** Agent template shown below:
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/exeSQL.jpg)
## Configurations
### SQL statement
This text input field allows you to write static SQL queries, such as `SELECT * FROM my_table`, and dynamic SQL queries using variables.
:::tip NOTE
Click **(x)** or type `/` to insert variables.
:::
For dynamic SQL queries, you can include variables in your SQL queries, such as `SELECT * FROM /sys.query`; if an **Agent** component is paired with the **Execute SQL** tool to generate SQL tasks (see the [Examples](#examples) section), you can directly insert that **Agent**'s output, `content`, into this field.
### Database type
The supported database type. Currently the following database types are available:
- MySQL
- PostreSQL
- MariaDB
- Microsoft SQL Server (Myssql)
### Database
Appears only when you select **Split** as method.
### Username
The username with access privileges to the database.
### Host
The IP address of the database server.
### Port
The port number on which the database server is listening.
### Password
The password for the database user.
### Max records
The maximum number of records returned by the SQL query to control response size and improve efficiency. Defaults to `1024`.
### Output
The **Execute SQL** tool provides two output variables:
- `formalized_content`: A string. If you reference this variable in a **Message** component, the returned records are displayed as a table.
- `json`: An object array. If you reference this variable in a **Message** component, the returned records will be presented as key-value pairs.

View File

@ -106,7 +106,7 @@ RAGFlow offers HTTP and Python APIs for you to integrate RAGFlow's capabilities
You can use iframe to embed the created chat assistant into a third-party webpage:
1. Before proceeding, you must [acquire an API key](../models/llm_api_key_setup.md); otherwise, an error message would appear.
1. Before proceeding, you must [acquire an API key](../../develop/acquire_ragflow_api_key.md); otherwise, an error message would appear.
2. Hover over an intended chat assistant **>** **Edit** to show the **iframe** window:
![chat-embed](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/embed_chat_into_webpage.jpg)

View File

@ -91,7 +91,7 @@ In RAGFlow, click on your logo on the top right of the page **>** **Model provid
In the popup window, complete basic settings for Ollama:
1. Ensure that your model name and type match those been pulled at step 1 (Deploy Ollama using Docker). For example, (`llama3.2` and `chat`) or (`bge-m3` and `embedding`).
2. In Ollama base URL, put the URL you found in step 2 followed by `/v1`, i.e. `http://host.docker.internal:11434/v1`, `http://localhost:11434/v1` or `http://${IP_OF_OLLAMA_MACHINE}:11434/v1`.
2. Put in the Ollama base URL, i.e. `http://host.docker.internal:11434`, `http://localhost:11434` or `http://${IP_OF_OLLAMA_MACHINE}:11434`.
3. OPTIONAL: Switch on the toggle under **Does it support Vision?** if your model includes an image-to-text model.

View File

@ -977,7 +977,7 @@ The languages that should be translated into, in order to achieve keywords retri
##### metadata_condition: `dict`
filter condition for meta_fields
filter condition for `meta_fields`.
#### Returns

View File

@ -65,6 +65,7 @@ A complete list of models supported by RAGFlow, which will continue to expand.
| 01.AI | :heavy_check_mark: | | | | | |
| DeepInfra | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: |
| 302.AI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| CometAPI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
```mdx-code-block
</APITable>

View File

@ -28,11 +28,11 @@ Released on September 10, 2025.
### Improvements
- Agent Performance Optimized: Improved planning and reflection speed for simple tasks; optimized concurrent tool calls for parallelizable scenarios, significantly reducing overall response time.
- Agent Prompt Framework exposed: Developers can now customize and override framework-level prompts in the system prompt section, enhancing flexibility and control.
- Execute SQL Component Enhanced: Replaced the original variable reference component with a text input field, allowing free-form SQL writing with variable support.
- Chat: Re-enabled Reasoning and Cross-language search.
- Retrieval API Enhanced: Added metadata filtering support to the [Retrieve chunks](https://ragflow.io/docs/dev/http_api_reference#retrieve-chunks) method.
- Agent:
- Agent Performance Optimized: Improves planning and reflection speed for simple tasks; optimizes concurrent tool calls for parallelizable scenarios, significantly reducing overall response time.
- Four framework-level prompt blocks are available in the **System prompt** section, enabling customization and overriding of prompts at the framework level, thereby enhancing flexibility and control. See [here](./guides/agent/agent_component_reference/agent.mdx#system-prompt).
- **Execute SQL** component enhanced: Replaces the original variable reference component with a text input field, allowing users to write free-form SQL queries and reference variables.
- Chat: Re-enables **Reasoning** and **Cross-language search**.
### Added models
@ -45,7 +45,21 @@ Released on September 10, 2025.
- Dataset: Deleted files remained searchable.
- Chat: Unable to chat with an Ollama model.
- Agent: Resolved issues including cite toggle failure, task mode requiring dialogue triggers, repeated answers in multi-turn dialogues, and duplicate summarization of parallel execution results.
- Agent:
- A **Cite** toggle failure.
- An Agent in task mode still required a dialogue to trigger.
- Repeated answers in multi-turn dialogues.
- Duplicate summarization of parallel execution results.
### API changes
#### HTTP APIs
- Adds a body parameter `"metadata_condition"` to the [Retrieve chunks](./references/http_api_reference.md#retrieve-chunks) method, enabling metadata-based chunk filtering during retrieval. [#9877](https://github.com/infiniflow/ragflow/pull/9877)
#### Python APIs
- Adds a parameter `metadata_condition` to the [Retrieve chunks](./references/python_api_reference.md#retrieve-chunks) method, enabling metadata-based chunk filtering during retrieval. [#9877](https://github.com/infiniflow/ragflow/pull/9877)
## v0.20.4

View File

@ -507,16 +507,29 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
markdown_parser = Markdown(int(parser_config.get("chunk_token_num", 128)))
sections, tables = markdown_parser(filename, binary, separate_tables=False)
try:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
callback(0.2, "Visual model detected. Attempting to enhance figure extraction...")
except Exception:
vision_model = None
if vision_model:
# Process images for each section
section_images = []
for section_text, _ in sections:
for idx, (section_text, _) in enumerate(sections):
images = markdown_parser.get_pictures(section_text) if section_text else None
if images:
# If multiple images found, combine them using concat_img
combined_image = reduce(concat_img, images) if len(images) > 1 else images[0]
section_images.append(combined_image)
markdown_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data= [((combined_image, ["markdown image"]), [(0, 0, 0, 0, 0)])], **kwargs)
boosted_figures = markdown_vision_parser(callback=callback)
sections[idx] = (section_text + "\n\n" + "\n\n".join([fig[0][1] for fig in boosted_figures]), sections[idx][1])
else:
section_images.append(None)
else:
logging.warning("No visual model detected. Skipping figure parsing enhancement.")
res = tokenize_table(tables, doc, is_english)
callback(0.8, "Finish parsing.")

View File

@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from functools import partial
@ -44,17 +43,17 @@ class ProcessBase(ComponentBase):
self.set_output("_created_time", time.perf_counter())
for k, v in kwargs.items():
self.set_output(k, v)
try:
#try:
with trio.fail_after(self._param.timeout):
await self._invoke(**kwargs)
self.callback(1, "Done")
except Exception as e:
if self.get_exception_default_value():
self.set_exception_default_value()
else:
self.set_output("_ERROR", str(e))
logging.exception(e)
self.callback(-1, str(e))
#except Exception as e:
# if self.get_exception_default_value():
# self.set_exception_default_value()
# else:
# self.set_output("_ERROR", str(e))
# logging.exception(e)
# self.callback(-1, str(e))
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return self.output()

View File

@ -12,18 +12,19 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import random
import trio
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from graphrag.utils import chat_limiter, get_llm_cache, set_llm_cache
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.chunker.schema import ChunkerFromUpstream
from rag.nlp import naive_merge, naive_merge_with_images
from rag.prompts.prompts import keyword_extraction, question_proposal
from rag.nlp import naive_merge, naive_merge_with_images, concat_img
from rag.prompts.prompts import keyword_extraction, question_proposal, detect_table_of_contents, \
table_of_contents_index, toc_transformer
from rag.utils import num_tokens_from_string
class ChunkerParam(ProcessParamBase):
@ -43,6 +44,7 @@ class ChunkerParam(ProcessParamBase):
"paper",
"laws",
"presentation",
"toc" # table of contents
# Other
# "Tag" # TODO: Other method
]
@ -54,7 +56,7 @@ class ChunkerParam(ProcessParamBase):
self.auto_keywords = 0
self.auto_questions = 0
self.tag_sets = []
self.llm_setting = {"llm_name": "", "lang": "Chinese"}
self.llm_setting = {"llm_id": "", "lang": "Chinese"}
def check(self):
self.check_valid_value(self.method.lower(), "Chunk method abnormal.", self.method_options)
@ -142,6 +144,91 @@ class Chunker(ProcessBase):
def _one(self, from_upstream: ChunkerFromUpstream):
pass
def _toc(self, from_upstream: ChunkerFromUpstream):
self.callback(random.randint(1, 5) / 100.0, "Start to chunk via `ToC`.")
if from_upstream.output_format in ["markdown", "text", "html"]:
return
# json
sections, section_images, page_1024, tc_arr = [], [], [""], [0]
for o in from_upstream.json_result or []:
txt = o.get("text", "")
tc = num_tokens_from_string(txt)
page_1024[-1] += "\n" + txt
tc_arr[-1] += tc
if tc_arr[-1] > 1024:
page_1024.append("")
tc_arr.append(0)
sections.append((o.get("text", ""), o.get("position_tag", "")))
section_images.append(o.get("image"))
print(len(sections), o)
llm_setting = self._param.llm_setting
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_id"], lang=llm_setting["lang"])
self.callback(random.randint(5, 15) / 100.0, "Start to detect table of contents...")
toc_secs = detect_table_of_contents(page_1024, chat_mdl)
if toc_secs:
self.callback(random.randint(25, 35) / 100.0, "Start to extract table of contents...")
toc_arr = toc_transformer(toc_secs, chat_mdl)
toc_arr = [it for it in toc_arr if it.get("structure")]
print(json.dumps(toc_arr, ensure_ascii=False, indent=2), flush=True)
self.callback(random.randint(35, 75) / 100.0, "Start to link table of contents...")
toc_arr = table_of_contents_index(toc_arr, [t for t,_ in sections], chat_mdl)
for i in range(len(toc_arr)-1):
if not toc_arr[i].get("indices"):
continue
for j in range(i+1, len(toc_arr)):
if toc_arr[j].get("indices"):
if toc_arr[j]["indices"][0] - toc_arr[i]["indices"][-1] > 1:
toc_arr[i]["indices"].extend([x for x in range(toc_arr[i]["indices"][-1]+1, toc_arr[j]["indices"][0])])
break
# put all sections ahead of toc_arr[0] into it
# for i in range(len(toc_arr)):
# if toc_arr[i].get("indices") and toc_arr[i]["indices"][0]:
# toc_arr[i]["indices"] = [x for x in range(toc_arr[i]["indices"][-1]+1)]
# break
# put all sections after toc_arr[-1] into it
for i in range(len(toc_arr)-1, -1, -1):
if toc_arr[i].get("indices") and toc_arr[i]["indices"][-1]:
toc_arr[i]["indices"] = [x for x in range(toc_arr[i]["indices"][0], len(sections))]
break
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n", json.dumps(toc_arr, ensure_ascii=False, indent=2), flush=True)
chunks, images = [], []
for it in toc_arr:
if not it.get("indices"):
continue
txt = ""
img = None
for i in it["indices"]:
idx = i
txt += "\n" + sections[idx][0] + "\t" + sections[idx][1]
if img and section_images[idx]:
img = concat_img(img, section_images[idx])
elif section_images[idx]:
img = section_images[idx]
it["indices"] = []
if not txt:
continue
it["indices"] = [len(chunks)]
print(it, "KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK\n", txt)
chunks.append(txt)
images.append(img)
self.callback(1, "Done")
return [
{
"text": RAGFlowPdfParser.remove_tag(c),
"image": img,
"positions": RAGFlowPdfParser.extract_positions(c),
}
for c, img in zip(chunks, images)
]
self.callback(message="No table of contents detected.")
async def _invoke(self, **kwargs):
function_map = {
"general": self._general,
@ -154,6 +241,7 @@ class Chunker(ProcessBase):
"laws": self._laws,
"presentation": self._presentation,
"one": self._one,
"toc": self._toc,
}
try:
@ -167,7 +255,7 @@ class Chunker(ProcessBase):
async def auto_keywords():
nonlocal chunks, llm_setting
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_name"], lang=llm_setting["lang"])
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_id"], lang=llm_setting["lang"])
async def doc_keyword_extraction(chat_mdl, ck, topn):
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "keywords", {"topn": topn})
@ -184,7 +272,7 @@ class Chunker(ProcessBase):
async def auto_questions():
nonlocal chunks, llm_setting
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_name"], lang=llm_setting["lang"])
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_id"], lang=llm_setting["lang"])
async def doc_question_proposal(chat_mdl, d, topn):
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "question", {"topn": topn})

View File

@ -22,7 +22,7 @@ class ChunkerFromUpstream(BaseModel):
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str
blob: bytes
file: dict | None = Field(default=None)
output_format: Literal["json", "markdown", "text", "html"] | None = Field(default=None)

View File

@ -14,10 +14,7 @@
# limitations under the License.
#
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.utils.storage_factory import STORAGE_IMPL
class FileParam(ProcessParamBase):
@ -41,10 +38,13 @@ class File(ProcessBase):
self.set_output("_ERROR", f"Document({self._canvas._doc_id}) not found!")
return
b, n = File2DocumentService.get_storage_address(doc_id=self._canvas._doc_id)
self.set_output("blob", STORAGE_IMPL.get(b, n))
#b, n = File2DocumentService.get_storage_address(doc_id=self._canvas._doc_id)
#self.set_output("blob", STORAGE_IMPL.get(b, n))
self.set_output("name", doc.name)
else:
file = kwargs.get("file")
self.set_output("name", file["name"])
self.set_output("blob", FileService.get_blob(file["created_by"], file["id"]))
self.set_output("file", file)
#self.set_output("blob", FileService.get_blob(file["created_by"], file["id"]))
self.callback(1, "File fetched.")

View File

@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@ -0,0 +1,178 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import random
import re
from copy import deepcopy
from functools import partial
import trio
from api.utils import get_uuid
from api.utils.base64_image import id2image, image2id
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.hierarchical_merger.schema import HierarchicalMergerFromUpstream
from rag.nlp import concat_img
from rag.utils.storage_factory import STORAGE_IMPL
class HierarchicalMergerParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.levels = []
self.hierarchy = None
def check(self):
self.check_empty(self.levels, "Hierarchical setups.")
self.check_empty(self.hierarchy, "Hierarchy number.")
def get_input_form(self) -> dict[str, dict]:
return {}
class HierarchicalMerger(ProcessBase):
component_name = "HierarchicalMerger"
async def _invoke(self, **kwargs):
try:
from_upstream = HierarchicalMergerFromUpstream.model_validate(kwargs)
except Exception as e:
self.set_output("_ERROR", f"Input error: {str(e)}")
return
self.callback(random.randint(1, 5) / 100.0, "Start to merge hierarchically.")
if from_upstream.output_format in ["markdown", "text", "html"]:
if from_upstream.output_format == "markdown":
payload = from_upstream.markdown_result
elif from_upstream.output_format == "text":
payload = from_upstream.text_result
else: # == "html"
payload = from_upstream.html_result
if not payload:
payload = ""
lines = [ln for ln in payload.split("\n") if ln]
else:
lines = [o.get("text", "") for o in from_upstream.json_result]
sections, section_images = [], []
for o in from_upstream.json_result or []:
sections.append((o.get("text", ""), o.get("position_tag", "")))
section_images.append(o.get("img_id"))
matches = []
for txt in lines:
good = False
for lvl, regs in enumerate(self._param.levels):
for reg in regs:
if re.search(reg, txt):
matches.append(lvl)
good = True
break
if good:
break
if not good:
matches.append(len(self._param.levels))
assert len(matches) == len(lines), f"{len(matches)} vs. {len(lines)}"
root = {
"level": -1,
"index": -1,
"texts": [],
"children": []
}
for i, m in enumerate(matches):
if m == 0:
root["children"].append({
"level": m,
"index": i,
"texts": [],
"children": []
})
elif m == len(self._param.levels):
def dfs(b):
if not b["children"]:
b["texts"].append(i)
else:
dfs(b["children"][-1])
dfs(root)
else:
def dfs(b):
nonlocal m, i
if not b["children"] or m == b["level"] + 1:
b["children"].append({
"level": m,
"index": i,
"texts": [],
"children": []
})
return
dfs(b["children"][-1])
dfs(root)
all_pathes = []
def dfs(n, path, depth):
nonlocal all_pathes
if depth < self._param.hierarchy:
path = deepcopy(path)
for nn in n["children"]:
path.extend([nn["index"], *nn["texts"]])
dfs(nn, path, depth+1)
if depth == self._param.hierarchy:
all_pathes.append(path)
for i in range(len(lines)):
print(i, lines[i])
dfs(root, [], 0)
print("sSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS", json.dumps(root, ensure_ascii=False, indent=2))
if from_upstream.output_format in ["markdown", "text", "html"]:
cks = []
for path in all_pathes:
txt = ""
for i in path:
txt += lines[i] + "\n"
cks.append(txt)
self.set_output("chunks", [{"text": c} for c in cks if c])
else:
cks = []
images = []
for path in all_pathes:
txt = ""
img = None
for i in path:
txt += lines[i] + "\n"
concat_img(img, id2image(section_images[i], partial(STORAGE_IMPL.get)))
cks.append(cks)
images.append(img)
cks = [
{
"text": RAGFlowPdfParser.remove_tag(c),
"image": img,
"positions": RAGFlowPdfParser.extract_positions(c),
}
for c, img in zip(cks, images)
]
async with trio.open_nursery() as nursery:
for d in cks:
nursery.start_soon(image2id, d, partial(STORAGE_IMPL.put), "_image_temps", get_uuid())
self.callback(1, "Done.")

View File

@ -0,0 +1,37 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Literal
from pydantic import BaseModel, ConfigDict, Field
class HierarchicalMergerFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str
file: dict | None = Field(default=None)
chunks: list[dict[str, Any]] | None = Field(default=None)
output_format: Literal["json", "markdown", "text", "html"] | None = Field(default=None)
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: list[str] | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")
# def to_dict(self, *, exclude_none: bool = True) -> dict:
# return self.model_dump(by_alias=True, exclude_none=exclude_none)

View File

@ -12,18 +12,27 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import logging
import random
from functools import partial
import trio
import numpy as np
from PIL import Image
from api.db import LLMType
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMBundle
from api.utils import get_uuid
from api.utils.base64_image import image2id
from deepdoc.parser import ExcelParser
from deepdoc.parser.pdf_parser import PlainParser, RAGFlowPdfParser, VisionParser
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.parser.schema import ParserFromUpstream
from rag.llm.cv_model import Base as VLM
from rag.utils.storage_factory import STORAGE_IMPL
class ParserParam(ProcessParamBase):
@ -43,17 +52,24 @@ class ParserParam(ProcessParamBase):
"json",
],
"ppt": [],
"image": [],
"image": [
"text"
],
"email": [],
"text": [],
"audio": [],
"text": [
"text",
"json"
],
"audio": [
"json"
],
"video": [],
}
self.setups = {
"pdf": {
"parse_method": "deepdoc", # deepdoc/plain_text/vlm
"vlm_name": "",
"llm_id": "",
"lang": "Chinese",
"suffix": [
"pdf",
@ -76,16 +92,46 @@ class ParserParam(ProcessParamBase):
"output_format": "json",
},
"markdown": {
"suffix": ["md", "markdown"],
"suffix": ["md", "markdown", "mdx"],
"output_format": "json",
},
"ppt": {},
"image": {
"parse_method": "ocr",
"llm_id": "",
"lang": "Chinese",
"suffix": ["jpg", "jpeg", "png", "gif"],
"output_format": "json",
},
"email": {
"fields": []
},
"text": {
"suffix": [
"txt"
],
"output_format": "json",
},
"audio": {
"suffix":[
"da",
"wave",
"wav",
"mp3",
"aac",
"flac",
"ogg",
"aiff",
"au",
"midi",
"wma",
"realaudio",
"vqf",
"oggvorbis",
"ape"
],
"output_format": "json",
},
"email": {},
"text": {},
"audio": {},
"video": {},
}
@ -96,7 +142,7 @@ class ParserParam(ProcessParamBase):
self.check_valid_value(pdf_parse_method.lower(), "Parse method abnormal.", ["deepdoc", "plain_text", "vlm"])
if pdf_parse_method not in ["deepdoc", "plain_text"]:
self.check_empty(pdf_config.get("vlm_name"), "VLM")
self.check_empty(pdf_config.get("llm_id"), "VLM")
pdf_language = pdf_config.get("lang", "")
self.check_empty(pdf_language, "Language")
@ -117,7 +163,23 @@ class ParserParam(ProcessParamBase):
image_config = self.setups.get("image", "")
if image_config:
image_parse_method = image_config.get("parse_method", "")
self.check_valid_value(image_parse_method.lower(), "Parse method abnormal.", ["ocr"])
self.check_valid_value(image_parse_method.lower(), "Parse method abnormal.", ["ocr", "vlm"])
if image_parse_method not in ["ocr"]:
self.check_empty(image_config.get("llm_id"), "VLM")
image_language = image_config.get("lang", "")
self.check_empty(image_language, "Language")
text_config = self.setups.get("text", "")
if text_config:
text_output_format = text_config.get("output_format", "")
self.check_valid_value(text_output_format, "Text output format abnormal.", self.allowed_output_format["text"])
audio_config = self.setups.get("audio", "")
if audio_config:
self.check_empty(audio_config.get("llm_id"), "VLM")
audio_language = audio_config.get("lang", "")
self.check_empty(audio_language, "Language")
def get_input_form(self) -> dict[str, dict]:
return {}
@ -126,10 +188,8 @@ class ParserParam(ProcessParamBase):
class Parser(ProcessBase):
component_name = "Parser"
def _pdf(self, from_upstream: ParserFromUpstream):
def _pdf(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PDF.")
blob = from_upstream.blob
conf = self._param.setups["pdf"]
self.set_output("output_format", conf["output_format"])
@ -139,8 +199,8 @@ class Parser(ProcessBase):
lines, _ = PlainParser()(blob)
bboxes = [{"text": t} for t, _ in lines]
else:
assert conf.get("vlm_name")
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("vlm_name"), lang=self._param.setups["pdf"].get("lang"))
assert conf.get("llm_id")
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("llm_id"), lang=self._param.setups["pdf"].get("lang"))
lines, _ = VisionParser(vision_model=vision_model)(blob, callback=self.callback)
bboxes = []
for t, poss in lines:
@ -149,6 +209,7 @@ class Parser(ProcessBase):
if conf.get("output_format") == "json":
self.set_output("json", bboxes)
if conf.get("output_format") == "markdown":
mkdn = ""
for b in bboxes:
@ -160,14 +221,10 @@ class Parser(ProcessBase):
mkdn += b.get("text", "") + "\n"
self.set_output("markdown", mkdn)
def _spreadsheet(self, from_upstream: ParserFromUpstream):
def _spreadsheet(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Spreadsheet.")
blob = from_upstream.blob
conf = self._param.setups["spreadsheet"]
self.set_output("output_format", conf["output_format"])
print("spreadsheet {conf=}", flush=True)
spreadsheet_parser = ExcelParser()
if conf.get("output_format") == "html":
html = spreadsheet_parser.html(blob, 1000000000)
@ -177,19 +234,13 @@ class Parser(ProcessBase):
elif conf.get("output_format") == "markdown":
self.set_output("markdown", spreadsheet_parser.markdown(blob))
def _word(self, from_upstream: ParserFromUpstream):
def _word(self, name, blob):
from tika import parser as word_parser
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
blob = from_upstream.blob
name = from_upstream.name
conf = self._param.setups["word"]
self.set_output("output_format", conf["output_format"])
print("word {conf=}", flush=True)
doc_parsed = word_parser.from_buffer(blob)
sections = []
if doc_parsed.get("content"):
sections = doc_parsed["content"].split("\n")
@ -202,26 +253,18 @@ class Parser(ProcessBase):
if conf.get("output_format") == "json":
self.set_output("json", sections)
def _markdown(self, from_upstream: ParserFromUpstream):
def _markdown(self, name, blob):
from functools import reduce
from rag.app.naive import Markdown as naive_markdown_parser
from rag.nlp import concat_img
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
blob = from_upstream.blob
name = from_upstream.name
self.callback(random.randint(1, 5) / 100.0, "Start to work on a markdown.")
conf = self._param.setups["markdown"]
self.set_output("output_format", conf["output_format"])
print("markdown {conf=}", flush=True)
markdown_parser = naive_markdown_parser()
sections, tables = markdown_parser(name, blob, separate_tables=False)
# json
assert conf.get("output_format") == "json", "have to be json for doc"
if conf.get("output_format") == "json":
json_results = []
@ -239,14 +282,86 @@ class Parser(ProcessBase):
json_results.append(json_result)
self.set_output("json", json_results)
else:
self.set_output("text", "\n".join([section_text for section_text, _ in sections]))
def _text(self, name, blob):
from deepdoc.parser.utils import get_text
self.callback(random.randint(1, 5) / 100.0, "Start to work on a text.")
conf = self._param.setups["text"]
self.set_output("output_format", conf["output_format"])
# parse binary to text
text_content = get_text(name, binary=blob)
if conf.get("output_format") == "json":
result = [{"text": text_content}]
self.set_output("json", result)
else:
result = text_content
self.set_output("text", result)
def _image(self, from_upstream: ParserFromUpstream):
from deepdoc.vision import OCR
self.callback(random.randint(1, 5) / 100.0, "Start to work on an image.")
blob = from_upstream.blob
conf = self._param.setups["image"]
self.set_output("output_format", conf["output_format"])
img = Image.open(io.BytesIO(blob)).convert("RGB")
lang = conf["lang"]
if conf["parse_method"] == "ocr":
# use ocr, recognize chars only
ocr = OCR()
bxs = ocr(np.array(img)) # return boxes and recognize result
txt = "\n".join([t[0] for _, t in bxs if t[0]])
else:
# use VLM to describe the picture
cv_model = LLMBundle(self._canvas.get_tenant_id(), LLMType.IMAGE2TEXT, llm_name=conf["llm_id"],lang=lang)
img_binary = io.BytesIO()
img.save(img_binary, format="JPEG")
img_binary.seek(0)
txt = cv_model.describe(img_binary.read())
self.set_output("text", txt)
def _audio(self, from_upstream: ParserFromUpstream):
import os
import tempfile
self.callback(random.randint(1, 5) / 100.0, "Start to work on an audio.")
blob = from_upstream.blob
name = from_upstream.name
conf = self._param.setups["audio"]
self.set_output("output_format", conf["output_format"])
lang = conf["lang"]
_, ext = os.path.splitext(name)
with tempfile.NamedTemporaryFile(suffix=ext) as tmpf:
tmpf.write(blob)
tmpf.flush()
tmp_path = os.path.abspath(tmpf.name)
seq2txt_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.SPEECH2TEXT, lang=lang)
txt = seq2txt_mdl.transcription(tmp_path)
self.set_output("text", txt)
async def _invoke(self, **kwargs):
function_map = {
"pdf": self._pdf,
"markdown": self._markdown,
"spreadsheet": self._spreadsheet,
"word": self._word
"word": self._word,
"text": self._text,
"image": self._image,
"audio": self._audio,
}
try:
from_upstream = ParserFromUpstream.model_validate(kwargs)
@ -254,8 +369,20 @@ class Parser(ProcessBase):
self.set_output("_ERROR", f"Input error: {str(e)}")
return
name = from_upstream.name
if self._canvas._doc_id:
b, n = File2DocumentService.get_storage_address(doc_id=self._canvas._doc_id)
blob = STORAGE_IMPL.get(b, n)
else:
blob = FileService.get_blob(from_upstream.file["created_by"], from_upstream.file["id"])
for p_type, conf in self._param.setups.items():
if from_upstream.name.split(".")[-1].lower() not in conf.get("suffix", []):
continue
await trio.to_thread.run_sync(function_map[p_type], from_upstream)
await trio.to_thread.run_sync(function_map[p_type], name, blob)
break
outs = self.output()
async with trio.open_nursery() as nursery:
for d in outs.get("json", []):
nursery.start_soon(image2id, d, partial(STORAGE_IMPL.put), "_image_temps", get_uuid())

View File

@ -20,6 +20,5 @@ class ParserFromUpstream(BaseModel):
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str
blob: bytes
file: dict | None = Field(default=None)
model_config = ConfigDict(populate_by_name=True, extra="forbid")

View File

@ -48,7 +48,24 @@ class Pipeline(Graph):
obj.append({"component_name": component_name, "trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")}]})
else:
obj = [{"component_name": component_name, "trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")}]}]
REDIS_CONN.set_obj(log_key, obj, 60 * 10)
REDIS_CONN.set_obj(log_key, obj, 60 * 30)
if self._doc_id:
percentage = 1./len(self.components.items())
msg = ""
finished = 0.
for o in obj:
if o['component_name'] == "END":
continue
msg += f"\n[{o['component_name']}]:\n"
for t in o["trace"]:
msg += "%s: %s\n"%(t["datetime"], t["message"])
if t["progress"] < 0:
finished = -1
break
if finished < 0:
break
finished += o["trace"][-1]["progress"] * percentage
DocumentService.update_by_id(self._doc_id, {"progress": finished, "progress_msg": msg})
except Exception as e:
logging.exception(e)
@ -108,5 +125,11 @@ class Pipeline(Graph):
idx += 1
self.path.extend(cpn_obj.get_downstream())
self.callback("END", 1, json.dumps(self.get_component_obj(self.path[-1]).output(), ensure_ascii=False))
if self._doc_id:
DocumentService.update_by_id(self._doc_id, {"progress": 1 if not self.error else -1, "progress_msg": "Pipeline finished...\n" + self.error, "process_duration": time.perf_counter() - st})
DocumentService.update_by_id(self._doc_id,{
"progress": 1 if not self.error else -1,
"progress_msg": "Pipeline finished...\n" + self.error,
"process_duration": time.perf_counter() - st
})

View File

@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@ -0,0 +1,38 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Literal
from pydantic import BaseModel, ConfigDict, Field
class SplitterFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str
file: dict | None = Field(default=None)
chunks: list[dict[str, Any]] | None = Field(default=None)
output_format: Literal["json", "markdown", "text", "html"] | None = Field(default=None)
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: list[str] | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")
# def to_dict(self, *, exclude_none: bool = True) -> dict:
# return self.model_dump(by_alias=True, exclude_none=exclude_none)

View File

@ -0,0 +1,112 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import random
from functools import partial
import trio
from api.utils import get_uuid
from api.utils.base64_image import id2image, image2id
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.splitter.schema import SplitterFromUpstream
from rag.nlp import naive_merge, naive_merge_with_images
from rag.utils.storage_factory import STORAGE_IMPL
class SplitterParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.chunk_token_size = 512
self.delimiters = ["\n"]
self.overlapped_percent = 0
def check(self):
self.check_empty(self.delimiters, "Delimiters.")
self.check_positive_integer(self.chunk_token_size, "Chunk token size.")
self.check_decimal_float(self.overlapped_percent, "Overlapped percentage: [0, 1)")
def get_input_form(self) -> dict[str, dict]:
return {}
class Splitter(ProcessBase):
component_name = "Splitter"
async def _invoke(self, **kwargs):
try:
from_upstream = SplitterFromUpstream.model_validate(kwargs)
except Exception as e:
self.set_output("_ERROR", f"Input error: {str(e)}")
return
deli = ""
for d in self._param.delimiters:
if len(d) > 1:
deli += f"`{d}`"
else:
deli += d
self.callback(random.randint(1, 5) / 100.0, "Start to split into chunks.")
if from_upstream.output_format in ["markdown", "text", "html"]:
if from_upstream.output_format == "markdown":
payload = from_upstream.markdown_result
elif from_upstream.output_format == "text":
payload = from_upstream.text_result
else: # == "html"
payload = from_upstream.html_result
if not payload:
payload = ""
cks = naive_merge(
payload,
self._param.chunk_token_size,
deli,
self._param.overlapped_percent,
)
self.set_output("chunks", [{"text": c} for c in cks])
self.callback(1, "Done.")
return
# json
sections, section_images = [], []
for o in from_upstream.json_result or []:
sections.append((o.get("text", ""), o.get("position_tag", "")))
section_images.append(id2image(o.get("img_id"), partial(STORAGE_IMPL.get)))
chunks, images = naive_merge_with_images(
sections,
section_images,
self._param.chunk_token_size,
deli,
self._param.overlapped_percent,
)
cks = [
{
"text": RAGFlowPdfParser.remove_tag(c),
"image": img,
"positions": RAGFlowPdfParser.extract_positions(c),
}
for c, img in zip(chunks, images)
]
async with trio.open_nursery() as nursery:
for d in cks:
nursery.start_soon(image2id, d, partial(STORAGE_IMPL.put), "_image_temps", get_uuid())
print("SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS\n", json.dumps(cks, ensure_ascii=False, indent=2))
self.set_output("chunks", cks)
self.callback(1, "Done.")

View File

@ -44,20 +44,58 @@
"markdown"
],
"output_format": "json"
}
},
"text": {
"suffix": ["txt"],
"output_format": "json"
},
"image": {
"parse_method": "vlm",
"llm_id":"glm-4.5v",
"lang": "Chinese",
"suffix": [
"jpg",
"jpeg",
"png",
"gif"
],
"output_format": "text"
},
"audio": {
"suffix": [
"da",
"wave",
"wav",
"mp3",
"aac",
"flac",
"ogg",
"aiff",
"au",
"midi",
"wma",
"realaudio",
"vqf",
"oggvorbis",
"ape"
],
"lang": "Chinese",
"llm_id": "SenseVoiceSmall",
"output_format": "json"
}
}
}
},
"downstream": ["Chunker:0"],
"downstream": ["Splitter:0"],
"upstream": ["Begin"]
},
"Chunker:0": {
"Splitter:0": {
"obj": {
"component_name": "Chunker",
"component_name": "Splitter",
"params": {
"method": "general",
"auto_keywords": 5
"chunk_token_size": 512,
"delimiters": ["\n"],
"overlapped_percent": 0
}
},
"downstream": ["Tokenizer:0"],

View File

@ -0,0 +1,84 @@
{
"components": {
"File": {
"obj":{
"component_name": "File",
"params": {
}
},
"downstream": ["Parser:0"],
"upstream": []
},
"Parser:0": {
"obj": {
"component_name": "Parser",
"params": {
"setups": {
"pdf": {
"parse_method": "deepdoc",
"vlm_name": "",
"lang": "Chinese",
"suffix": [
"pdf"
],
"output_format": "json"
},
"spreadsheet": {
"suffix": [
"xls",
"xlsx",
"csv"
],
"output_format": "html"
},
"word": {
"suffix": [
"doc",
"docx"
],
"output_format": "json"
},
"markdown": {
"suffix": [
"md",
"markdown"
],
"output_format": "text"
},
"text": {
"suffix": ["txt"],
"output_format": "json"
}
}
}
},
"downstream": ["Splitter:0"],
"upstream": ["File"]
},
"Splitter:0": {
"obj": {
"component_name": "Splitter",
"params": {
"chunk_token_size": 512,
"delimiters": ["\r\n"],
"overlapped_percent": 0
}
},
"downstream": ["HierarchicalMerger:0"],
"upstream": ["Parser:0"]
},
"HierarchicalMerger:0": {
"obj": {
"component_name": "HierarchicalMerger",
"params": {
"levels": [["^#[^#]"], ["^##[^#]"], ["^###[^#]"], ["^####[^#]"]],
"hierarchy": 2
}
},
"downstream": [],
"upstream": ["Splitter:0"]
}
},
"path": []
}

View File

@ -22,7 +22,7 @@ class TokenizerFromUpstream(BaseModel):
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str = ""
blob: bytes
file: dict | None = Field(default=None)
output_format: Literal["json", "markdown", "text", "html"] | None = Field(default=None)

View File

@ -37,6 +37,7 @@ class TokenizerParam(ProcessParamBase):
super().__init__()
self.search_method = ["full_text", "embedding"]
self.filename_embd_weight = 0.1
self.fields = ["text"]
def check(self):
for v in self.search_method:
@ -61,10 +62,14 @@ class Tokenizer(ProcessBase):
embedding_model = LLMBundle(self._canvas._tenant_id, LLMType.EMBEDDING, llm_name=embedding_id)
texts = []
for c in chunks:
if c.get("questions"):
texts.append("\n".join(c["questions"]))
else:
texts.append(re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", c["text"]))
txt = ""
for f in self._param.fields:
f = c.get(f)
if isinstance(f, str):
txt += f
elif isinstance(f, list):
txt += "\n".join(f)
texts.append(re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", txt))
vts, c = embedding_model.encode([name])
token_count += c
tts = np.concatenate([vts[0] for _ in range(len(texts))], axis=0)

View File

@ -37,6 +37,18 @@ class SupportedLiteLLMProvider(StrEnum):
TogetherAI = "TogetherAI"
Anthropic = "Anthropic"
Ollama = "Ollama"
Meituan = "Meituan"
CometAPI = "CometAPI"
SILICONFLOW = "SILICONFLOW"
OpenRouter = "OpenRouter"
StepFun = "StepFun"
PPIO = "PPIO"
PerfXCloud = "PerfXCloud"
Upstage = "Upstage"
NovitaAI = "NovitaAI"
Lingyi_AI = "01.AI"
GiteeAI = "GiteeAI"
AI_302 = "302.AI"
FACTORY_DEFAULT_BASE_URL = {
@ -44,6 +56,18 @@ FACTORY_DEFAULT_BASE_URL = {
SupportedLiteLLMProvider.Dashscope: "https://dashscope.aliyuncs.com/compatible-mode/v1",
SupportedLiteLLMProvider.Moonshot: "https://api.moonshot.cn/v1",
SupportedLiteLLMProvider.Ollama: "",
SupportedLiteLLMProvider.Meituan: "https://api.longcat.chat/openai",
SupportedLiteLLMProvider.CometAPI: "https://api.cometapi.com/v1",
SupportedLiteLLMProvider.SILICONFLOW: "https://api.siliconflow.cn/v1",
SupportedLiteLLMProvider.OpenRouter: "https://openrouter.ai/api/v1",
SupportedLiteLLMProvider.StepFun: "https://api.stepfun.com/v1",
SupportedLiteLLMProvider.PPIO: "https://api.ppinfra.com/v3/openai",
SupportedLiteLLMProvider.PerfXCloud: "https://cloud.perfxlab.cn/v1",
SupportedLiteLLMProvider.Upstage: "https://api.upstage.ai/v1/solar",
SupportedLiteLLMProvider.NovitaAI: "https://api.novita.ai/v3/openai",
SupportedLiteLLMProvider.Lingyi_AI: "https://api.lingyiwanwu.com/v1",
SupportedLiteLLMProvider.GiteeAI: "https://ai.gitee.com/v1/",
SupportedLiteLLMProvider.AI_302: "https://api.302.ai/v1",
}
@ -62,6 +86,18 @@ LITELLM_PROVIDER_PREFIX = {
SupportedLiteLLMProvider.TogetherAI: "together_ai/",
SupportedLiteLLMProvider.Anthropic: "", # don't need a prefix
SupportedLiteLLMProvider.Ollama: "ollama_chat/",
SupportedLiteLLMProvider.Meituan: "openai/",
SupportedLiteLLMProvider.CometAPI: "openai/",
SupportedLiteLLMProvider.SILICONFLOW: "openai/",
SupportedLiteLLMProvider.OpenRouter: "openai/",
SupportedLiteLLMProvider.StepFun: "openai/",
SupportedLiteLLMProvider.PPIO: "openai/",
SupportedLiteLLMProvider.PerfXCloud: "openai/",
SupportedLiteLLMProvider.Upstage: "openai/",
SupportedLiteLLMProvider.NovitaAI: "openai/",
SupportedLiteLLMProvider.Lingyi_AI: "openai/",
SupportedLiteLLMProvider.GiteeAI: "openai/",
SupportedLiteLLMProvider.AI_302: "openai/",
}
ChatModel = globals().get("ChatModel", {})

View File

@ -895,25 +895,6 @@ class MistralChat(Base):
yield total_tokens
## openrouter
class OpenRouterChat(Base):
_FACTORY_NAME = "OpenRouter"
def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1", **kwargs):
if not base_url:
base_url = "https://openrouter.ai/api/v1"
super().__init__(key, model_name, base_url, **kwargs)
class StepFunChat(Base):
_FACTORY_NAME = "StepFun"
def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1", **kwargs):
if not base_url:
base_url = "https://api.stepfun.com/v1"
super().__init__(key, model_name, base_url, **kwargs)
class LmStudioChat(Base):
_FACTORY_NAME = "LM-Studio"
@ -936,15 +917,6 @@ class OpenAI_APIChat(Base):
super().__init__(key, model_name, base_url, **kwargs)
class PPIOChat(Base):
_FACTORY_NAME = "PPIO"
def __init__(self, key, model_name, base_url="https://api.ppinfra.com/v3/openai", **kwargs):
if not base_url:
base_url = "https://api.ppinfra.com/v3/openai"
super().__init__(key, model_name, base_url, **kwargs)
class LeptonAIChat(Base):
_FACTORY_NAME = "LeptonAI"
@ -954,60 +926,6 @@ class LeptonAIChat(Base):
super().__init__(key, model_name, base_url, **kwargs)
class PerfXCloudChat(Base):
_FACTORY_NAME = "PerfXCloud"
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1", **kwargs):
if not base_url:
base_url = "https://cloud.perfxlab.cn/v1"
super().__init__(key, model_name, base_url, **kwargs)
class UpstageChat(Base):
_FACTORY_NAME = "Upstage"
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar", **kwargs):
if not base_url:
base_url = "https://api.upstage.ai/v1/solar"
super().__init__(key, model_name, base_url, **kwargs)
class NovitaAIChat(Base):
_FACTORY_NAME = "NovitaAI"
def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai", **kwargs):
if not base_url:
base_url = "https://api.novita.ai/v3/openai"
super().__init__(key, model_name, base_url, **kwargs)
class SILICONFLOWChat(Base):
_FACTORY_NAME = "SILICONFLOW"
def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1", **kwargs):
if not base_url:
base_url = "https://api.siliconflow.cn/v1"
super().__init__(key, model_name, base_url, **kwargs)
class YiChat(Base):
_FACTORY_NAME = "01.AI"
def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1", **kwargs):
if not base_url:
base_url = "https://api.lingyiwanwu.com/v1"
super().__init__(key, model_name, base_url, **kwargs)
class GiteeChat(Base):
_FACTORY_NAME = "GiteeAI"
def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/", **kwargs):
if not base_url:
base_url = "https://ai.gitee.com/v1/"
super().__init__(key, model_name, base_url, **kwargs)
class ReplicateChat(Base):
_FACTORY_NAME = "Replicate"
@ -1347,26 +1265,46 @@ class GPUStackChat(Base):
super().__init__(key, model_name, base_url, **kwargs)
class Ai302Chat(Base):
_FACTORY_NAME = "302.AI"
class TokenPonyChat(Base):
_FACTORY_NAME = "TokenPony"
def __init__(self, key, model_name, base_url="https://api.302.ai/v1", **kwargs):
def __init__(self, key, model_name, base_url="https://ragflow.vip-api.tokenpony.cn/v1", **kwargs):
if not base_url:
base_url = "https://api.302.ai/v1"
super().__init__(key, model_name, base_url, **kwargs)
class MeituanChat(Base):
_FACTORY_NAME = "Meituan"
def __init__(self, key, model_name, base_url="https://api.longcat.chat/openai", **kwargs):
if not base_url:
base_url = "https://api.longcat.chat/openai"
super().__init__(key, model_name, base_url, **kwargs)
base_url = "https://ragflow.vip-api.tokenpony.cn/v1"
class LiteLLMBase(ABC):
_FACTORY_NAME = ["Tongyi-Qianwen", "Bedrock", "Moonshot", "xAI", "DeepInfra", "Groq", "Cohere", "Gemini", "DeepSeek", "NVIDIA", "TogetherAI", "Anthropic", "Ollama"]
_FACTORY_NAME = [
"Tongyi-Qianwen",
"Bedrock",
"Moonshot",
"xAI",
"DeepInfra",
"Groq",
"Cohere",
"Gemini",
"DeepSeek",
"NVIDIA",
"TogetherAI",
"Anthropic",
"Ollama",
"Meituan",
"CometAPI",
"SILICONFLOW",
"OpenRouter",
"StepFun",
"PPIO",
"PerfXCloud",
"Upstage",
"NovitaAI",
"01.AI",
"GiteeAI",
"302.AI",
]
import litellm
litellm._turn_on_debug()
def __init__(self, key, model_name, base_url=None, **kwargs):
self.timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
@ -1374,7 +1312,7 @@ class LiteLLMBase(ABC):
self.prefix = LITELLM_PROVIDER_PREFIX.get(self.provider, "")
self.model_name = f"{self.prefix}{model_name}"
self.api_key = key
self.base_url = (base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")).rstrip('/')
self.base_url = (base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")).rstrip("/")
# Configure retry parameters
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))

View File

@ -86,6 +86,7 @@ class DefaultEmbedding(Base):
with DefaultEmbedding._model_lock:
import torch
from FlagEmbedding import FlagModel
if "CUDA_VISIBLE_DEVICES" in os.environ:
input_cuda_visible_devices = os.environ["CUDA_VISIBLE_DEVICES"]
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # handle some issues with multiple GPUs when initializing the model
@ -145,7 +146,7 @@ class OpenAIEmbed(Base):
ress = []
total_tokens = 0
for i in range(0, len(texts), batch_size):
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name, encoding_format="float")
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name, encoding_format="float", extra_body={"drop_params": True})
try:
ress.extend([d.embedding for d in res.data])
total_tokens += self.total_token_count(res)
@ -154,7 +155,7 @@ class OpenAIEmbed(Base):
return np.array(ress), total_tokens
def encode_queries(self, text):
res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name, encoding_format="float")
res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name, encoding_format="float",extra_body={"drop_params": True})
return np.array(res.data[0].embedding), self.total_token_count(res)
@ -472,6 +473,7 @@ class MistralEmbed(Base):
def encode(self, texts: list):
import time
import random
texts = [truncate(t, 8196) for t in texts]
batch_size = 16
ress = []
@ -495,6 +497,7 @@ class MistralEmbed(Base):
def encode_queries(self, text):
import time
import random
retry_max = 5
while retry_max > 0:
try:
@ -659,7 +662,7 @@ class OpenAI_APIEmbed(OpenAIEmbed):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("url cannot be None")
base_url = urljoin(base_url, "v1")
#base_url = urljoin(base_url, "v1")
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name.split("___")[0]
@ -751,6 +754,10 @@ class SILICONFLOWEmbed(Base):
token_count = 0
for i in range(0, len(texts), batch_size):
texts_batch = texts[i : i + batch_size]
if self.model_name in ["BAAI/bge-large-zh-v1.5", "BAAI/bge-large-en-v1.5"]:
# limit 512, 340 is almost safe
texts_batch = [" " if not text.strip() else truncate(text, 340) for text in texts_batch]
else:
texts_batch = [" " if not text.strip() else text for text in texts_batch]
payload = {
@ -938,6 +945,7 @@ class GiteeEmbed(SILICONFLOWEmbed):
base_url = "https://ai.gitee.com/v1/embeddings"
super().__init__(key, model_name, base_url)
class DeepInfraEmbed(OpenAIEmbed):
_FACTORY_NAME = "DeepInfra"
@ -954,3 +962,12 @@ class Ai302Embed(Base):
if not base_url:
base_url = "https://api.302.ai/v1/embeddings"
super().__init__(key, model_name, base_url)
class CometEmbed(OpenAIEmbed):
_FACTORY_NAME = "CometAPI"
def __init__(self, key, model_name, base_url="https://api.cometapi.com/v1"):
if not base_url:
base_url = "https://api.cometapi.com/v1"
super().__init__(key, model_name, base_url)

View File

@ -218,7 +218,7 @@ class GPUStackSeq2txt(Base):
class GiteeSeq2txt(Base):
_FACTORY_NAME = "GiteeAI"
def __init__(self, key, model_name="whisper-1", base_url="https://ai.gitee.com/v1/"):
def __init__(self, key, model_name="whisper-1", base_url="https://ai.gitee.com/v1/", **kwargs):
if not base_url:
base_url = "https://ai.gitee.com/v1/"
self.client = OpenAI(api_key=key, base_url=base_url)
@ -234,3 +234,13 @@ class DeepInfraSeq2txt(Base):
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
class CometSeq2txt(Base):
_FACTORY_NAME = "CometAPI"
def __init__(self, key, model_name="whisper-1", base_url="https://api.cometapi.com/v1", **kwargs):
if not base_url:
base_url = "https://api.cometapi.com/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name

View File

@ -394,3 +394,11 @@ class DeepInfraTTS(OpenAITTS):
if not base_url:
base_url = "https://api.deepinfra.com/v1/openai"
super().__init__(key, model_name, base_url, **kwargs)
class CometAPITTS(OpenAITTS):
_FACTORY_NAME = "CometAPI"
def __init__(self, key, model_name, base_url="https://api.cometapi.com/v1", **kwargs):
if not base_url:
base_url = "https://api.cometapi.com/v1"
super().__init__(key, model_name, base_url, **kwargs)

View File

@ -437,3 +437,216 @@ def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> list:
except Exception:
logging.exception(f"Loading json failure: {ans}")
return []
def gen_json(system_prompt:str, user_prompt:str, chat_mdl):
_, msg = message_fit_in(form_message(system_prompt, user_prompt), chat_mdl.max_length)
ans = chat_mdl.chat(msg[0]["content"], msg[1:])
ans = re.sub(r"(^.*</think>|```json\n|```\n*$)", "", ans, flags=re.DOTALL)
try:
return json_repair.loads(ans)
except Exception:
logging.exception(f"Loading json failure: {ans}")
TOC_DETECTION = load_prompt("toc_detection")
def detect_table_of_contents(page_1024:list[str], chat_mdl):
toc_secs = []
for i, sec in enumerate(page_1024[:22]):
ans = gen_json(PROMPT_JINJA_ENV.from_string(TOC_DETECTION).render(page_txt=sec), "Only JSON please.", chat_mdl)
if toc_secs and not ans["exists"]:
break
toc_secs.append(sec)
return toc_secs
TOC_EXTRACTION = load_prompt("toc_extraction")
TOC_EXTRACTION_CONTINUE = load_prompt("toc_extraction_continue")
def extract_table_of_contents(toc_pages, chat_mdl):
if not toc_pages:
return []
return gen_json(PROMPT_JINJA_ENV.from_string(TOC_EXTRACTION).render(toc_page="\n".join(toc_pages)), "Only JSON please.", chat_mdl)
def toc_index_extractor(toc:list[dict], content:str, chat_mdl):
tob_extractor_prompt = """
You are given a table of contents in a json format and several pages of a document, your job is to add the physical_index to the table of contents in the json format.
The provided pages contains tags like <physical_index_X> and <physical_index_X> to indicate the physical location of the page X.
The structure variable is the numeric system which represents the index of the hierarchy section in the table of contents. For example, the first section has structure index 1, the first subsection has structure index 1.1, the second subsection has structure index 1.2, etc.
The response should be in the following JSON format:
[
{
"structure": <structure index, "x.x.x" or None> (string),
"title": <title of the section>,
"physical_index": "<physical_index_X>" (keep the format)
},
...
]
Only add the physical_index to the sections that are in the provided pages.
If the title of the section are not in the provided pages, do not add the physical_index to it.
Directly return the final JSON structure. Do not output anything else."""
prompt = tob_extractor_prompt + '\nTable of contents:\n' + json.dumps(toc, ensure_ascii=False, indent=2) + '\nDocument pages:\n' + content
return gen_json(prompt, "Only JSON please.", chat_mdl)
TOC_INDEX = load_prompt("toc_index")
def table_of_contents_index(toc_arr: list[dict], sections: list[str], chat_mdl):
if not toc_arr or not sections:
return []
toc_map = {}
for i, it in enumerate(toc_arr):
k1 = (it["structure"]+it["title"]).replace(" ", "")
k2 = it["title"].strip()
if k1 not in toc_map:
toc_map[k1] = []
if k2 not in toc_map:
toc_map[k2] = []
toc_map[k1].append(i)
toc_map[k2].append(i)
for it in toc_arr:
it["indices"] = []
for i, sec in enumerate(sections):
sec = sec.strip()
if sec.replace(" ", "") in toc_map:
for j in toc_map[sec.replace(" ", "")]:
toc_arr[j]["indices"].append(i)
all_pathes = []
def dfs(start, path):
nonlocal all_pathes
if start >= len(toc_arr):
if path:
all_pathes.append(path)
return
if not toc_arr[start]["indices"]:
dfs(start+1, path)
return
added = False
for j in toc_arr[start]["indices"]:
if path and j < path[-1][0]:
continue
_path = deepcopy(path)
_path.append((j, start))
added = True
dfs(start+1, _path)
if not added and path:
all_pathes.append(path)
dfs(0, [])
path = max(all_pathes, key=lambda x:len(x))
for it in toc_arr:
it["indices"] = []
for j, i in path:
toc_arr[i]["indices"] = [j]
print(json.dumps(toc_arr, ensure_ascii=False, indent=2))
i = 0
while i < len(toc_arr):
it = toc_arr[i]
if it["indices"]:
i += 1
continue
if i>0 and toc_arr[i-1]["indices"]:
st_i = toc_arr[i-1]["indices"][-1]
else:
st_i = 0
e = i + 1
while e <len(toc_arr) and not toc_arr[e]["indices"]:
e += 1
if e >= len(toc_arr):
e = len(sections)
else:
e = toc_arr[e]["indices"][0]
for j in range(st_i, min(e+1, len(sections))):
ans = gen_json(PROMPT_JINJA_ENV.from_string(TOC_INDEX).render(
structure=it["structure"],
title=it["title"],
text=sections[j]), "Only JSON please.", chat_mdl)
if ans["exist"] == "yes":
it["indices"].append(j)
break
i += 1
return toc_arr
def check_if_toc_transformation_is_complete(content, toc, chat_mdl):
prompt = """
You are given a raw table of contents and a table of contents.
Your job is to check if the table of contents is complete.
Reply format:
{{
"thinking": <why do you think the cleaned table of contents is complete or not>
"completed": "yes" or "no"
}}
Directly return the final JSON structure. Do not output anything else."""
prompt = prompt + '\n Raw Table of contents:\n' + content + '\n Cleaned Table of contents:\n' + toc
response = gen_json(prompt, "Only JSON please.", chat_mdl)
return response['completed']
def toc_transformer(toc_pages, chat_mdl):
init_prompt = """
You are given a table of contents, You job is to transform the whole table of content into a JSON format included table_of_contents.
The `structure` is the numeric system which represents the index of the hierarchy section in the table of contents. For example, the first section has structure index 1, the first subsection has structure index 1.1, the second subsection has structure index 1.2, etc.
The `title` is a short phrase or a several-words term.
The response should be in the following JSON format:
[
{
"structure": <structure index, "x.x.x" or None> (string),
"title": <title of the section>
},
...
],
You should transform the full table of contents in one go.
Directly return the final JSON structure, do not output anything else. """
toc_content = "\n".join(toc_pages)
prompt = init_prompt + '\n Given table of contents\n:' + toc_content
def clean_toc(arr):
for a in arr:
a["title"] = re.sub(r"[.·….]{2,}", "", a["title"])
last_complete = gen_json(prompt, "Only JSON please.", chat_mdl)
if_complete = check_if_toc_transformation_is_complete(toc_content, json.dumps(last_complete, ensure_ascii=False, indent=2), chat_mdl)
clean_toc(last_complete)
if if_complete == "yes":
return last_complete
while not (if_complete == "yes"):
prompt = f"""
Your task is to continue the table of contents json structure, directly output the remaining part of the json structure.
The response should be in the following JSON format:
The raw table of contents json structure is:
{toc_content}
The incomplete transformed table of contents json structure is:
{json.dumps(last_complete[-24:], ensure_ascii=False, indent=2)}
Please continue the json structure, directly output the remaining part of the json structure."""
new_complete = gen_json(prompt, "Only JSON please.", chat_mdl)
if not new_complete or str(last_complete).find(str(new_complete)) >= 0:
break
clean_toc(new_complete)
last_complete.extend(new_complete)
if_complete = check_if_toc_transformation_is_complete(toc_content, json.dumps(last_complete, ensure_ascii=False, indent=2), chat_mdl)
return last_complete

View File

@ -0,0 +1,29 @@
You are an AI assistant designed to analyze text content and detect whether a table of contents (TOC) list exists on the given page. Follow these steps:
1. **Analyze the Input**: Carefully review the provided text content.
2. **Identify Key Features**: Look for common indicators of a TOC, such as:
- Section titles or headings paired with page numbers.
- Patterns like repeated formatting (e.g., bold/italicized text, dots/dashes between titles and numbers).
- Phrases like "Table of Contents," "Contents," or similar headings.
- Logical grouping of topics/subtopics with sequential page references.
3. **Discern Negative Features**:
- The text contains no numbers, or the numbers present are clearly not page references (e.g., dates, statistical figures, phone numbers, version numbers).
- The text consists of full, descriptive sentences and paragraphs that form a narrative, present arguments, or explain concepts, rather than succinctly listing topics.
- Contains citations with authors, publication years, journal titles, and page ranges (e.g., "Smith, J. (2020). Journal Title, 10(2), 45-67.").
- Lists keywords or terms followed by multiple page numbers, often in alphabetical order.
- Comprises terms followed by their definitions or explanations.
- Labeled with headers like "Appendix A," "Appendix B," etc.
- Contains expressive language thanking individuals or organizations for their support or contributions.
4. **Evaluate Evidence**: Weigh the presence/absence of these features to determine if the content resembles a TOC.
5. **Output Format**: Provide your response in the following JSON structure:
```json
{
"reasoning": "Step-by-step explanation of your analysis based on the features identified." ,
"exists": true/false
}
```
6. **DO NOT** output anything else except JSON structure.
**Input text Content ( Text-Only Extraction ):**
{{ page_txt }}

View File

@ -0,0 +1,53 @@
You are an expert parser and data formatter. Your task is to analyze the provided table of contents (TOC) text and convert it into a valid JSON array of objects.
**Instructions:**
1. Analyze each line of the input TOC.
2. For each line, extract the following three pieces of information:
* `structure`: The hierarchical index/numbering (e.g., "1", "2.1", "3.2.5", "A.1"). If a line has no visible numbering or structure indicator (like a main "Chapter" title), use `null`.
* `title`: The textual title of the section or chapter. This should be the main descriptive text, clean and without the page number.
3. Output **only** a valid JSON array. Do not include any other text, explanations, or markdown code block fences (like ```json) in your response.
**JSON Format:**
The output must be a list of objects following this exact schema:
```json
[
{
"structure": <structure index, "x.x.x" or None> (string,
"title": <title of the section>
},
...
]
```
**Input Example:**
```
Contents
1 Introduction to the System ... 1
1.1 Overview .... 2
1.2 Key Features .... 5
2 Installation Guide ....8
2.1 Prerequisites ........ 9
2.2 Step-by-Step Process ........ 12
Appendix A: Specifications ..... 45
References ... 47
```
**Expected Output For The Example:**
```json
[
{"structure": null, "title": "Contents"},
{"structure": "1", "title": "Introduction to the System"},
{"structure": "1.1", "title": "Overview"},
{"structure": "1.2", "title": "Key Features"},
{"structure": "2", "title": "Installation Guide"},
{"structure": "2.1", "title": "Prerequisites"},
{"structure": "2.2", "title": "Step-by-Step Process"},
{"structure": "A", "title": "Specifications"},
{"structure": null, "title": "References"}
]
```
**Now, process the following TOC input:**
```
{{ toc_page }}
```

View File

@ -0,0 +1,60 @@
You are an expert parser and data formatter, currently in the process of building a JSON array from a multi-page table of contents (TOC). Your task is to analyze the new page of content and **append** the new entries to the existing JSON array.
**Instructions:**
1. You will be given two inputs:
* `current_page_text`: The text content from the new page of the TOC.
* `existing_json`: The valid JSON array you have generated from the previous pages.
2. Analyze each line of the `current_page_text` input.
3. For each new line, extract the following three pieces of information:
* `structure`: The hierarchical index/numbering (e.g., "1", "2.1", "3.2.5"). Use `null` if none exists.
* `title`: The clean textual title of the section or chapter.
* `page`: The page number on which the section starts. Extract only the number. Use `null` if not present.
4. **Append these new entries** to the `existing_json` array. Do not modify, reorder, or delete any of the existing entries.
5. Output **only** the complete, updated JSON array. Do not include any other text, explanations, or markdown code block fences (like ```json).
**JSON Format:**
The output must be a valid JSON array following this schema:
```json
[
{
"structure": <string or null>,
"title": <string>,
"page": <number or null>
},
...
]
```
**Input Example:**
`current_page_text`:
```
3.2 Advanced Configuration ........... 25
3.3 Troubleshooting .................. 28
4 User Management .................... 30
```
`existing_json`:
```json
[
{"structure": "1", "title": "Introduction", "page": 1},
{"structure": "2", "title": "Installation", "page": 5},
{"structure": "3", "title": "Configuration", "page": 12},
{"structure": "3.1", "title": "Basic Setup", "page": 15}
]
```
**Expected Output For The Example:**
```json
[
{"structure": "3.2", "title": "Advanced Configuration", "page": 25},
{"structure": "3.3", "title": "Troubleshooting", "page": 28},
{"structure": "4", "title": "User Management", "page": 30}
]
```
**Now, process the following inputs:**
`current_page_text`:
{{ toc_page }}
`existing_json`:
{{ toc_json }}

20
rag/prompts/toc_index.md Normal file
View File

@ -0,0 +1,20 @@
You are an expert analyst tasked with matching text content to the title.
**Instructions:**
1. Analyze the given title with its numeric structure index and the provided text.
2. Determine whether the title is mentioned as a section tile in the given text.
3. Provide a concise, step-by-step reasoning for your decision.
4. Output **only** the complete JSON object. Do not include any other text, explanations, or markdown code block fences (like ```json).
**Output Format:**
Your output must be a valid JSON object with the following keys:
{
"reasoning": "Step-by-step explanation of your analysis.",
"exist": "<yes or no>",
}
** The title: **
{{ structure }} {{ title }}
** Given text: **
{{ text }}

View File

@ -23,6 +23,7 @@ import time
from api.utils import get_uuid
from api.utils.api_utils import timeout
from api.utils.base64_image import image2id
from api.utils.log_utils import init_root_logger, get_project_base_directory
from graphrag.general.index import run_graphrag
from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
@ -37,7 +38,6 @@ import xxhash
import copy
import re
from functools import partial
from io import BytesIO
from multiprocessing.context import TimeoutError
from timeit import default_timer as timer
import tracemalloc
@ -301,29 +301,7 @@ async def build_chunks(task, progress_callback):
d["img_id"] = ""
docs.append(d)
return
with BytesIO() as output_buffer:
if isinstance(d["image"], bytes):
output_buffer.write(d["image"])
output_buffer.seek(0)
else:
# If the image is in RGBA mode, convert it to RGB mode before saving it in JPEG format.
if d["image"].mode in ("RGBA", "P"):
converted_image = d["image"].convert("RGB")
#d["image"].close() # Close original image
d["image"] = converted_image
try:
d["image"].save(output_buffer, format='JPEG')
except OSError as e:
logging.warning(
"Saving image of chunk {}/{}/{} got exception, ignore: {}".format(task["location"], task["name"], d["id"], str(e)))
async with minio_limiter:
await trio.to_thread.run_sync(lambda: STORAGE_IMPL.put(task["kb_id"], d["id"], output_buffer.getvalue()))
d["img_id"] = "{}-{}".format(task["kb_id"], d["id"])
if not isinstance(d["image"], bytes):
d["image"].close()
del d["image"] # Remove image reference
await image2id(d, partial(STORAGE_IMPL.put), task["kb_id"], d["id"])
docs.append(d)
except Exception:
logging.exception(

View File

@ -14,24 +14,24 @@
},
"node_modules/asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmmirror.com/asynckit/-/asynckit-0.4.0.tgz",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"license": "MIT"
},
"node_modules/axios": {
"version": "1.9.0",
"resolved": "https://registry.npmmirror.com/axios/-/axios-1.9.0.tgz",
"integrity": "sha512-re4CqKTJaURpzbLHtIi6XpDv20/CnpXOtjRY5/CU32L8gU8ek9UIivcfvSWvmKEngmVbrUtPpdDwWDWL7DNHvg==",
"version": "1.12.0",
"resolved": "https://registry.npmjs.org/axios/-/axios-1.12.0.tgz",
"integrity": "sha512-oXTDccv8PcfjZmPGlWsPSwtOJCZ/b6W5jAMCNcfwJbCzDckwG0jrYJFaWH1yvivfCXjVzV/SPDEhMB3Q+DSurg==",
"license": "MIT",
"dependencies": {
"follow-redirects": "^1.15.6",
"form-data": "^4.0.0",
"form-data": "^4.0.4",
"proxy-from-env": "^1.1.0"
}
},
"node_modules/call-bind-apply-helpers": {
"version": "1.0.2",
"resolved": "https://registry.npmmirror.com/call-bind-apply-helpers/-/call-bind-apply-helpers-1.0.2.tgz",
"resolved": "https://registry.npmjs.org/call-bind-apply-helpers/-/call-bind-apply-helpers-1.0.2.tgz",
"integrity": "sha512-Sp1ablJ0ivDkSzjcaJdxEunN5/XvksFJ2sMBFfq6x0ryhQV/2b/KwFe21cMpmHtPOSij8K99/wSfoEuTObmuMQ==",
"license": "MIT",
"dependencies": {
@ -44,7 +44,7 @@
},
"node_modules/combined-stream": {
"version": "1.0.8",
"resolved": "https://registry.npmmirror.com/combined-stream/-/combined-stream-1.0.8.tgz",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"license": "MIT",
"dependencies": {
@ -56,7 +56,7 @@
},
"node_modules/delayed-stream": {
"version": "1.0.0",
"resolved": "https://registry.npmmirror.com/delayed-stream/-/delayed-stream-1.0.0.tgz",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"license": "MIT",
"engines": {
@ -65,7 +65,7 @@
},
"node_modules/dunder-proto": {
"version": "1.0.1",
"resolved": "https://registry.npmmirror.com/dunder-proto/-/dunder-proto-1.0.1.tgz",
"resolved": "https://registry.npmjs.org/dunder-proto/-/dunder-proto-1.0.1.tgz",
"integrity": "sha512-KIN/nDJBQRcXw0MLVhZE9iQHmG68qAVIBg9CqmUYjmQIhgij9U5MFvrqkUL5FbtyyzZuOeOt0zdeRe4UY7ct+A==",
"license": "MIT",
"dependencies": {
@ -79,7 +79,7 @@
},
"node_modules/es-define-property": {
"version": "1.0.1",
"resolved": "https://registry.npmmirror.com/es-define-property/-/es-define-property-1.0.1.tgz",
"resolved": "https://registry.npmjs.org/es-define-property/-/es-define-property-1.0.1.tgz",
"integrity": "sha512-e3nRfgfUZ4rNGL232gUgX06QNyyez04KdjFrF+LTRoOXmrOgFKDg4BCdsjW8EnT69eqdYGmRpJwiPVYNrCaW3g==",
"license": "MIT",
"engines": {
@ -88,7 +88,7 @@
},
"node_modules/es-errors": {
"version": "1.3.0",
"resolved": "https://registry.npmmirror.com/es-errors/-/es-errors-1.3.0.tgz",
"resolved": "https://registry.npmjs.org/es-errors/-/es-errors-1.3.0.tgz",
"integrity": "sha512-Zf5H2Kxt2xjTvbJvP2ZWLEICxA6j+hAmMzIlypy4xcBg1vKVnx89Wy0GbS+kf5cwCVFFzdCFh2XSCFNULS6csw==",
"license": "MIT",
"engines": {
@ -97,7 +97,7 @@
},
"node_modules/es-object-atoms": {
"version": "1.1.1",
"resolved": "https://registry.npmmirror.com/es-object-atoms/-/es-object-atoms-1.1.1.tgz",
"resolved": "https://registry.npmjs.org/es-object-atoms/-/es-object-atoms-1.1.1.tgz",
"integrity": "sha512-FGgH2h8zKNim9ljj7dankFPcICIK9Cp5bm+c2gQSYePhpaG5+esrLODihIorn+Pe6FGJzWhXQotPv73jTaldXA==",
"license": "MIT",
"dependencies": {
@ -109,7 +109,7 @@
},
"node_modules/es-set-tostringtag": {
"version": "2.1.0",
"resolved": "https://registry.npmmirror.com/es-set-tostringtag/-/es-set-tostringtag-2.1.0.tgz",
"resolved": "https://registry.npmjs.org/es-set-tostringtag/-/es-set-tostringtag-2.1.0.tgz",
"integrity": "sha512-j6vWzfrGVfyXxge+O0x5sh6cvxAog0a/4Rdd2K36zCMV5eJ+/+tOAngRO8cODMNWbVRdVlmGZQL2YS3yR8bIUA==",
"license": "MIT",
"dependencies": {
@ -143,14 +143,15 @@
}
},
"node_modules/form-data": {
"version": "4.0.2",
"resolved": "https://registry.npmmirror.com/form-data/-/form-data-4.0.2.tgz",
"integrity": "sha512-hGfm/slu0ZabnNt4oaRZ6uREyfCj6P4fT/n6A1rGV+Z0VdGXjfOhVUpkn6qVQONHGIFwmveGXyDs75+nr6FM8w==",
"version": "4.0.4",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.4.tgz",
"integrity": "sha512-KrGhL9Q4zjj0kiUt5OO4Mr/A/jlI2jDYs5eHBpYHPcBEVSiipAvn2Ko2HnPe20rmcuuvMHNdZFp+4IlGTMF0Ow==",
"license": "MIT",
"dependencies": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
"es-set-tostringtag": "^2.1.0",
"hasown": "^2.0.2",
"mime-types": "^2.1.12"
},
"engines": {
@ -159,7 +160,7 @@
},
"node_modules/function-bind": {
"version": "1.1.2",
"resolved": "https://registry.npmmirror.com/function-bind/-/function-bind-1.1.2.tgz",
"resolved": "https://registry.npmjs.org/function-bind/-/function-bind-1.1.2.tgz",
"integrity": "sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA==",
"license": "MIT",
"funding": {
@ -168,7 +169,7 @@
},
"node_modules/get-intrinsic": {
"version": "1.3.0",
"resolved": "https://registry.npmmirror.com/get-intrinsic/-/get-intrinsic-1.3.0.tgz",
"resolved": "https://registry.npmjs.org/get-intrinsic/-/get-intrinsic-1.3.0.tgz",
"integrity": "sha512-9fSjSaos/fRIVIp+xSJlE6lfwhES7LNtKaCBIamHsjr2na1BiABJPo0mOjjz8GJDURarmCPGqaiVg5mfjb98CQ==",
"license": "MIT",
"dependencies": {
@ -192,7 +193,7 @@
},
"node_modules/get-proto": {
"version": "1.0.1",
"resolved": "https://registry.npmmirror.com/get-proto/-/get-proto-1.0.1.tgz",
"resolved": "https://registry.npmjs.org/get-proto/-/get-proto-1.0.1.tgz",
"integrity": "sha512-sTSfBjoXBp89JvIKIefqw7U2CCebsc74kiY6awiGogKtoSGbgjYE/G/+l9sF3MWFPNc9IcoOC4ODfKHfxFmp0g==",
"license": "MIT",
"dependencies": {
@ -205,7 +206,7 @@
},
"node_modules/gopd": {
"version": "1.2.0",
"resolved": "https://registry.npmmirror.com/gopd/-/gopd-1.2.0.tgz",
"resolved": "https://registry.npmjs.org/gopd/-/gopd-1.2.0.tgz",
"integrity": "sha512-ZUKRh6/kUFoAiTAtTYPZJ3hw9wNxx+BIBOijnlG9PnrJsCcSjs1wyyD6vJpaYtgnzDrKYRSqf3OO6Rfa93xsRg==",
"license": "MIT",
"engines": {
@ -217,7 +218,7 @@
},
"node_modules/has-symbols": {
"version": "1.1.0",
"resolved": "https://registry.npmmirror.com/has-symbols/-/has-symbols-1.1.0.tgz",
"resolved": "https://registry.npmjs.org/has-symbols/-/has-symbols-1.1.0.tgz",
"integrity": "sha512-1cDNdwJ2Jaohmb3sg4OmKaMBwuC48sYni5HUw2DvsC8LjGTLK9h+eb1X6RyuOHe4hT0ULCW68iomhjUoKUqlPQ==",
"license": "MIT",
"engines": {
@ -229,7 +230,7 @@
},
"node_modules/has-tostringtag": {
"version": "1.0.2",
"resolved": "https://registry.npmmirror.com/has-tostringtag/-/has-tostringtag-1.0.2.tgz",
"resolved": "https://registry.npmjs.org/has-tostringtag/-/has-tostringtag-1.0.2.tgz",
"integrity": "sha512-NqADB8VjPFLM2V0VvHUewwwsw0ZWBaIdgo+ieHtK3hasLz4qeCRjYcqfB6AQrBggRKppKF8L52/VqdVsO47Dlw==",
"license": "MIT",
"dependencies": {
@ -244,7 +245,7 @@
},
"node_modules/hasown": {
"version": "2.0.2",
"resolved": "https://registry.npmmirror.com/hasown/-/hasown-2.0.2.tgz",
"resolved": "https://registry.npmjs.org/hasown/-/hasown-2.0.2.tgz",
"integrity": "sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ==",
"license": "MIT",
"dependencies": {
@ -256,7 +257,7 @@
},
"node_modules/math-intrinsics": {
"version": "1.1.0",
"resolved": "https://registry.npmmirror.com/math-intrinsics/-/math-intrinsics-1.1.0.tgz",
"resolved": "https://registry.npmjs.org/math-intrinsics/-/math-intrinsics-1.1.0.tgz",
"integrity": "sha512-/IXtbwEk5HTPyEwyKX6hGkYXxM9nbj64B+ilVJnC/R6B0pH5G4V3b0pVbL7DBj4tkhBAppbQUlf6F6Xl9LHu1g==",
"license": "MIT",
"engines": {
@ -265,7 +266,7 @@
},
"node_modules/mime-db": {
"version": "1.52.0",
"resolved": "https://registry.npmmirror.com/mime-db/-/mime-db-1.52.0.tgz",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"license": "MIT",
"engines": {
@ -274,7 +275,7 @@
},
"node_modules/mime-types": {
"version": "2.1.35",
"resolved": "https://registry.npmmirror.com/mime-types/-/mime-types-2.1.35.tgz",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"license": "MIT",
"dependencies": {

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 96 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 16 KiB

View File

@ -139,7 +139,7 @@ function EmbedDialog({
</form>
</Form>
<div>
<span>Embed code</span>
<span>{t('embedCode', { keyPrefix: 'search' })}</span>
<HightLightMarkdown>{text}</HightLightMarkdown>
</div>
<div className=" font-medium mt-4 mb-1">

View File

@ -54,7 +54,9 @@ export enum LLMFactory {
DeepInfra = 'DeepInfra',
Grok = 'Grok',
XAI = 'xAI',
TokenPony = 'TokenPony',
Meituan = 'Meituan',
CometAPI = 'CometAPI',
}
// Please lowercase the file name
@ -114,5 +116,7 @@ export const IconMap = {
[LLMFactory.DeepInfra]: 'deepinfra',
[LLMFactory.Grok]: 'grok',
[LLMFactory.XAI]: 'xai',
[LLMFactory.TokenPony]: 'token-pony',
[LLMFactory.Meituan]: 'longcat',
[LLMFactory.CometAPI]: 'cometapi',
};

View File

@ -136,6 +136,7 @@ export const useSelectLlmOptionsByModelType = () => {
};
};
// Merge different types of models from the same manufacturer under one manufacturer
export const useComposeLlmOptionsByModelTypes = (
modelTypes: LlmModelType[],
) => {
@ -155,7 +156,12 @@ export const useComposeLlmOptionsByModelTypes = (
options.forEach((x) => {
const item = pre.find((y) => y.label === x.label);
if (item) {
item.options.push(...x.options);
x.options.forEach((y) => {
// A model that is both an image2text and speech2text model
if (!item.options.some((z) => z.value === y.value)) {
item.options.push(y);
}
});
} else {
pre.push(x);
}

View File

@ -155,7 +155,7 @@ export default {
similarityThreshold: '相似度阈值',
similarityThresholdTip:
'我们使用混合相似度得分来评估两行文本之间的距离。 它是加权关键词相似度和向量余弦相似度。 如果查询和块之间的相似度小于此阈值,则该块将被过滤掉。默认设置为 0.2,也就是说文本块的混合相似度得分至少 20 才会被召回。',
vectorSimilarityWeight: '相似度相似度权重',
vectorSimilarityWeight: '向量相似度权重',
vectorSimilarityWeightTip:
'我们使用混合相似性评分来评估两行文本之间的距离。它是加权关键字相似性和矢量余弦相似性或rerank得分0〜1。两个权重的总和为1.0。',
keywordSimilarityWeight: '关键词相似度权重',
@ -633,6 +633,8 @@ General实体和关系提取提示来自 GitHub - microsoft/graphrag基于
},
cancel: '取消',
chatSetting: '聊天设置',
avatarHidden: '隐藏头像',
locale: '地区',
},
setting: {
profile: '概要',

View File

@ -62,7 +62,7 @@ function AgentChatBox() {
return (
<>
<section className="flex flex-1 flex-col px-5 h-[90vh]">
<section className="flex flex-1 flex-col px-5 min-h-0 pb-4">
<div className="flex-1 overflow-auto" ref={messageContainerRef}>
<div>
{/* <Spin spinning={sendLoading}> */}

View File

@ -9,7 +9,7 @@ export function ChatSheet({ hideModal }: IModalProps<any>) {
return (
<Sheet open modal={false} onOpenChange={hideModal}>
<SheetContent
className={cn('top-20 p-0')}
className={cn('top-20 bottom-0 p-0 flex flex-col h-auto')}
onInteractOutside={(e) => e.preventDefault()}
>
<SheetTitle className="hidden"></SheetTitle>

View File

@ -145,7 +145,7 @@ function AgentForm({ node }: INextOperatorForm) {
<PromptEditor
{...field}
placeholder={t('flow.messagePlaceholder')}
showToolbar={false}
showToolbar={true}
extraOptions={extraOptions}
></PromptEditor>
</FormControl>
@ -166,7 +166,7 @@ function AgentForm({ node }: INextOperatorForm) {
<section>
<PromptEditor
{...field}
showToolbar={false}
showToolbar={true}
></PromptEditor>
</section>
</FormControl>

View File

@ -2133,7 +2133,7 @@ export const QWeatherTimePeriodOptions = [
'30d',
];
export const ExeSQLOptions = ['mysql', 'postgresql', 'mariadb', 'mssql'].map(
export const ExeSQLOptions = ['mysql', 'postgres', 'mariadb', 'mssql'].map(
(x) => ({
label: upperFirst(x),
value: x,

View File

@ -2133,7 +2133,7 @@ export const QWeatherTimePeriodOptions = [
'30d',
];
export const ExeSQLOptions = ['mysql', 'postgresql', 'mariadb', 'mssql'].map(
export const ExeSQLOptions = ['mysql', 'postgres', 'mariadb', 'mssql'].map(
(x) => ({
label: upperFirst(x),
value: x,

View File

@ -9,13 +9,7 @@ import { cn, formatBytes } from '@/lib/utils';
import { Routes } from '@/routes';
import { formatPureDate } from '@/utils/date';
import { isEmpty } from 'lodash';
import {
Banknote,
Database,
DatabaseZap,
FileSearch2,
GitGraph,
} from 'lucide-react';
import { Banknote, Database, FileSearch2, GitGraph } from 'lucide-react';
import { useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useHandleMenuClick } from './hooks';
@ -34,11 +28,11 @@ export function SideBar({ refreshCount }: PropType) {
const items = useMemo(() => {
const list = [
{
icon: DatabaseZap,
label: t(`knowledgeDetails.overview`),
key: Routes.DataSetOverview,
},
// {
// icon: DatabaseZap,
// label: t(`knowledgeDetails.overview`),
// key: Routes.DataSetOverview,
// },
{
icon: Database,
label: t(`knowledgeDetails.dataset`),

View File

@ -19,9 +19,10 @@ import { Input } from '@/components/ui/input';
import { useNavigatePage } from '@/hooks/logic-hooks/navigate-hooks';
import { IModalProps } from '@/interfaces/common';
import { zodResolver } from '@hookform/resolvers/zod';
import { useForm, useWatch } from 'react-hook-form';
import { useForm } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
import { z } from 'zod';
import {
ChunkMethodItem,
EmbeddingModelItem,
@ -89,6 +90,7 @@ export function InputForm({ onOk }: IModalProps<any>) {
console.log('submit', data);
onOk?.(data);
}
const parseType = useWatch({
control: form.control,
name: 'parseType',
@ -121,6 +123,7 @@ export function InputForm({ onOk }: IModalProps<any>) {
</FormItem>
)}
/>
<EmbeddingModelItem line={2} isEdit={false} />
<ParseTypeItem />
{parseType === 1 && (

View File

@ -0,0 +1,123 @@
import { ButtonLoading } from '@/components/ui/button';
import {
Dialog,
DialogContent,
DialogFooter,
DialogHeader,
DialogTitle,
} from '@/components/ui/dialog';
import {
Form,
FormControl,
FormField,
FormItem,
FormLabel,
FormMessage,
} from '@/components/ui/form';
import { Input } from '@/components/ui/input';
import { IModalProps } from '@/interfaces/common';
import { zodResolver } from '@hookform/resolvers/zod';
import { useForm, useWatch } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
import { z } from 'zod';
import {
DataExtractKnowledgeItem,
DataFlowItem,
EmbeddingModelItem,
ParseTypeItem,
TeamItem,
} from '../dataset/dataset-setting/configuration/common-item';
const FormId = 'dataset-creating-form';
export function InputForm({ onOk }: IModalProps<any>) {
const { t } = useTranslation();
const FormSchema = z.object({
name: z
.string()
.min(1, {
message: t('knowledgeList.namePlaceholder'),
})
.trim(),
parseType: z.number().optional(),
});
const form = useForm<z.infer<typeof FormSchema>>({
resolver: zodResolver(FormSchema),
defaultValues: {
name: '',
parseType: 1,
},
});
function onSubmit(data: z.infer<typeof FormSchema>) {
onOk?.(data.name);
}
const parseType = useWatch({
control: form.control,
name: 'parseType',
});
return (
<Form {...form}>
<form
onSubmit={form.handleSubmit(onSubmit)}
className="space-y-6"
id={FormId}
>
<FormField
control={form.control}
name="name"
render={({ field }) => (
<FormItem>
<FormLabel>
<span className="text-destructive mr-1"> *</span>
{t('knowledgeList.name')}
</FormLabel>
<FormControl>
<Input
placeholder={t('knowledgeList.namePlaceholder')}
{...field}
/>
</FormControl>
<FormMessage />
</FormItem>
)}
/>
<EmbeddingModelItem line={2} />
<ParseTypeItem />
{parseType === 2 && (
<>
<DataFlowItem />
<DataExtractKnowledgeItem />
<TeamItem />
</>
)}
</form>
</Form>
);
}
export function DatasetCreatingDialog({
hideModal,
onOk,
loading,
}: IModalProps<any>) {
const { t } = useTranslation();
return (
<Dialog open onOpenChange={hideModal}>
<DialogContent className="sm:max-w-[425px]">
<DialogHeader>
<DialogTitle>{t('knowledgeList.createKnowledgeBase')}</DialogTitle>
</DialogHeader>
<InputForm onOk={onOk}></InputForm>
<DialogFooter>
<ButtonLoading type="submit" form={FormId} loading={loading}>
{t('common.save')}
</ButtonLoading>
</DialogFooter>
</DialogContent>
</Dialog>
);
}

View File

@ -2911,7 +2911,7 @@ export const QWeatherTimePeriodOptions = [
'30d',
];
export const ExeSQLOptions = ['mysql', 'postgresql', 'mariadb', 'mssql'].map(
export const ExeSQLOptions = ['mysql', 'postgres', 'mariadb', 'mssql'].map(
(x) => ({
label: upperFirst(x),
value: x,

View File

@ -37,6 +37,7 @@ const llmFactoryToUrlMap = {
'https://huggingface.co/docs/text-embeddings-inference/quick_tour',
[LLMFactory.GPUStack]: 'https://docs.gpustack.ai/latest/quickstart',
[LLMFactory.VLLM]: 'https://docs.vllm.ai/en/latest/',
[LLMFactory.TokenPony]: 'https://docs.tokenpony.cn/#/',
};
type LlmFactory = keyof typeof llmFactoryToUrlMap;

View File

@ -1,7 +1,10 @@
import { IModalManagerChildrenProps } from '@/components/modal-manager';
import { LlmModelType } from '@/constants/knowledge';
import { useTranslate } from '@/hooks/common-hooks';
import { ISystemModelSettingSavingParams } from '@/hooks/llm-hooks';
import {
ISystemModelSettingSavingParams,
useComposeLlmOptionsByModelTypes,
} from '@/hooks/llm-hooks';
import { Form, Modal, Select } from 'antd';
import { useEffect } from 'react';
import { useFetchSystemModelSettingOnMount } from '../hooks';
@ -43,6 +46,11 @@ const SystemModelSettingModal = ({
const onFormLayoutChange = () => {};
const modelOptions = useComposeLlmOptionsByModelTypes([
LlmModelType.Chat,
LlmModelType.Image2text,
]);
return (
<Modal
title={t('systemModelSettings')}
@ -58,14 +66,7 @@ const SystemModelSettingModal = ({
name="llm_id"
tooltip={t('chatModelTip')}
>
<Select
options={[
...allOptions[LlmModelType.Chat],
...allOptions[LlmModelType.Image2text],
]}
allowClear
showSearch
/>
<Select options={modelOptions} allowClear showSearch />
</Form.Item>
<Form.Item
label={t('embeddingModel')}

View File

@ -44,6 +44,7 @@ const orderFactoryList = [
LLMFactory.Ollama,
LLMFactory.Xinference,
LLMFactory.Ai302,
LLMFactory.CometAPI,
];
export const sortLLmFactoryListBySpecifiedOrder = (list: IFactory[]) => {