mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Feat: add splitter (#10161)
### What problem does this PR solve? ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: Lynn <lynn_inf@hotmail.com> Co-authored-by: chanx <1243304602@qq.com> Co-authored-by: balibabu <cike8899@users.noreply.github.com> Co-authored-by: 纷繁下的无奈 <zhileihuang@126.com> Co-authored-by: huangzl <huangzl@shinemo.com> Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com> Co-authored-by: Wilmer <33392318@qq.com> Co-authored-by: Adrian Weidig <adrianweidig@gmx.net> Co-authored-by: Zhichang Yu <yuzhichang@gmail.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Yongteng Lei <yongtengrey@outlook.com> Co-authored-by: Liu An <asiro@qq.com> Co-authored-by: buua436 <66937541+buua436@users.noreply.github.com> Co-authored-by: BadwomanCraZY <511528396@qq.com> Co-authored-by: cucusenok <31804608+cucusenok@users.noreply.github.com> Co-authored-by: Russell Valentine <russ@coldstonelabs.org> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Billy Bao <newyorkupperbay@gmail.com> Co-authored-by: Zhedong Cen <cenzhedong2@126.com> Co-authored-by: TensorNull <129579691+TensorNull@users.noreply.github.com> Co-authored-by: TensorNull <tensor.null@gmail.com>
This commit is contained in:
@ -86,9 +86,10 @@ class DefaultEmbedding(Base):
|
||||
with DefaultEmbedding._model_lock:
|
||||
import torch
|
||||
from FlagEmbedding import FlagModel
|
||||
|
||||
if "CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
input_cuda_visible_devices = os.environ["CUDA_VISIBLE_DEVICES"]
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # handle some issues with multiple GPUs when initializing the model
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # handle some issues with multiple GPUs when initializing the model
|
||||
|
||||
if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
|
||||
try:
|
||||
@ -145,7 +146,7 @@ class OpenAIEmbed(Base):
|
||||
ress = []
|
||||
total_tokens = 0
|
||||
for i in range(0, len(texts), batch_size):
|
||||
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name, encoding_format="float")
|
||||
res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name, encoding_format="float", extra_body={"drop_params": True})
|
||||
try:
|
||||
ress.extend([d.embedding for d in res.data])
|
||||
total_tokens += self.total_token_count(res)
|
||||
@ -154,7 +155,7 @@ class OpenAIEmbed(Base):
|
||||
return np.array(ress), total_tokens
|
||||
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name, encoding_format="float")
|
||||
res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name, encoding_format="float",extra_body={"drop_params": True})
|
||||
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||
|
||||
|
||||
@ -472,6 +473,7 @@ class MistralEmbed(Base):
|
||||
def encode(self, texts: list):
|
||||
import time
|
||||
import random
|
||||
|
||||
texts = [truncate(t, 8196) for t in texts]
|
||||
batch_size = 16
|
||||
ress = []
|
||||
@ -495,6 +497,7 @@ class MistralEmbed(Base):
|
||||
def encode_queries(self, text):
|
||||
import time
|
||||
import random
|
||||
|
||||
retry_max = 5
|
||||
while retry_max > 0:
|
||||
try:
|
||||
@ -659,7 +662,7 @@ class OpenAI_APIEmbed(OpenAIEmbed):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
if not base_url:
|
||||
raise ValueError("url cannot be None")
|
||||
base_url = urljoin(base_url, "v1")
|
||||
#base_url = urljoin(base_url, "v1")
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name.split("___")[0]
|
||||
|
||||
@ -751,7 +754,11 @@ class SILICONFLOWEmbed(Base):
|
||||
token_count = 0
|
||||
for i in range(0, len(texts), batch_size):
|
||||
texts_batch = texts[i : i + batch_size]
|
||||
texts_batch = [" " if not text.strip() else text for text in texts_batch]
|
||||
if self.model_name in ["BAAI/bge-large-zh-v1.5", "BAAI/bge-large-en-v1.5"]:
|
||||
# limit 512, 340 is almost safe
|
||||
texts_batch = [" " if not text.strip() else truncate(text, 340) for text in texts_batch]
|
||||
else:
|
||||
texts_batch = [" " if not text.strip() else text for text in texts_batch]
|
||||
|
||||
payload = {
|
||||
"model": self.model_name,
|
||||
@ -938,6 +945,7 @@ class GiteeEmbed(SILICONFLOWEmbed):
|
||||
base_url = "https://ai.gitee.com/v1/embeddings"
|
||||
super().__init__(key, model_name, base_url)
|
||||
|
||||
|
||||
class DeepInfraEmbed(OpenAIEmbed):
|
||||
_FACTORY_NAME = "DeepInfra"
|
||||
|
||||
@ -954,3 +962,12 @@ class Ai302Embed(Base):
|
||||
if not base_url:
|
||||
base_url = "https://api.302.ai/v1/embeddings"
|
||||
super().__init__(key, model_name, base_url)
|
||||
|
||||
|
||||
class CometEmbed(OpenAIEmbed):
|
||||
_FACTORY_NAME = "CometAPI"
|
||||
|
||||
def __init__(self, key, model_name, base_url="https://api.cometapi.com/v1"):
|
||||
if not base_url:
|
||||
base_url = "https://api.cometapi.com/v1"
|
||||
super().__init__(key, model_name, base_url)
|
||||
|
||||
Reference in New Issue
Block a user