mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Feat: add splitter (#10161)
### What problem does this PR solve? ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: Lynn <lynn_inf@hotmail.com> Co-authored-by: chanx <1243304602@qq.com> Co-authored-by: balibabu <cike8899@users.noreply.github.com> Co-authored-by: 纷繁下的无奈 <zhileihuang@126.com> Co-authored-by: huangzl <huangzl@shinemo.com> Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com> Co-authored-by: Wilmer <33392318@qq.com> Co-authored-by: Adrian Weidig <adrianweidig@gmx.net> Co-authored-by: Zhichang Yu <yuzhichang@gmail.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Yongteng Lei <yongtengrey@outlook.com> Co-authored-by: Liu An <asiro@qq.com> Co-authored-by: buua436 <66937541+buua436@users.noreply.github.com> Co-authored-by: BadwomanCraZY <511528396@qq.com> Co-authored-by: cucusenok <31804608+cucusenok@users.noreply.github.com> Co-authored-by: Russell Valentine <russ@coldstonelabs.org> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Billy Bao <newyorkupperbay@gmail.com> Co-authored-by: Zhedong Cen <cenzhedong2@126.com> Co-authored-by: TensorNull <129579691+TensorNull@users.noreply.github.com> Co-authored-by: TensorNull <tensor.null@gmail.com>
This commit is contained in:
@ -12,18 +12,27 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import io
|
||||
import logging
|
||||
import random
|
||||
from functools import partial
|
||||
|
||||
import trio
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from api.db import LLMType
|
||||
from api.db.services.file2document_service import File2DocumentService
|
||||
from api.db.services.file_service import FileService
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api.utils import get_uuid
|
||||
from api.utils.base64_image import image2id
|
||||
from deepdoc.parser import ExcelParser
|
||||
from deepdoc.parser.pdf_parser import PlainParser, RAGFlowPdfParser, VisionParser
|
||||
from rag.flow.base import ProcessBase, ProcessParamBase
|
||||
from rag.flow.parser.schema import ParserFromUpstream
|
||||
from rag.llm.cv_model import Base as VLM
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
|
||||
|
||||
class ParserParam(ProcessParamBase):
|
||||
@ -43,17 +52,24 @@ class ParserParam(ProcessParamBase):
|
||||
"json",
|
||||
],
|
||||
"ppt": [],
|
||||
"image": [],
|
||||
"image": [
|
||||
"text"
|
||||
],
|
||||
"email": [],
|
||||
"text": [],
|
||||
"audio": [],
|
||||
"text": [
|
||||
"text",
|
||||
"json"
|
||||
],
|
||||
"audio": [
|
||||
"json"
|
||||
],
|
||||
"video": [],
|
||||
}
|
||||
|
||||
self.setups = {
|
||||
"pdf": {
|
||||
"parse_method": "deepdoc", # deepdoc/plain_text/vlm
|
||||
"vlm_name": "",
|
||||
"llm_id": "",
|
||||
"lang": "Chinese",
|
||||
"suffix": [
|
||||
"pdf",
|
||||
@ -76,16 +92,46 @@ class ParserParam(ProcessParamBase):
|
||||
"output_format": "json",
|
||||
},
|
||||
"markdown": {
|
||||
"suffix": ["md", "markdown"],
|
||||
"suffix": ["md", "markdown", "mdx"],
|
||||
"output_format": "json",
|
||||
},
|
||||
"ppt": {},
|
||||
"image": {
|
||||
"parse_method": "ocr",
|
||||
"llm_id": "",
|
||||
"lang": "Chinese",
|
||||
"suffix": ["jpg", "jpeg", "png", "gif"],
|
||||
"output_format": "json",
|
||||
},
|
||||
"email": {
|
||||
"fields": []
|
||||
},
|
||||
"text": {
|
||||
"suffix": [
|
||||
"txt"
|
||||
],
|
||||
"output_format": "json",
|
||||
},
|
||||
"audio": {
|
||||
"suffix":[
|
||||
"da",
|
||||
"wave",
|
||||
"wav",
|
||||
"mp3",
|
||||
"aac",
|
||||
"flac",
|
||||
"ogg",
|
||||
"aiff",
|
||||
"au",
|
||||
"midi",
|
||||
"wma",
|
||||
"realaudio",
|
||||
"vqf",
|
||||
"oggvorbis",
|
||||
"ape"
|
||||
],
|
||||
"output_format": "json",
|
||||
},
|
||||
"email": {},
|
||||
"text": {},
|
||||
"audio": {},
|
||||
"video": {},
|
||||
}
|
||||
|
||||
@ -96,7 +142,7 @@ class ParserParam(ProcessParamBase):
|
||||
self.check_valid_value(pdf_parse_method.lower(), "Parse method abnormal.", ["deepdoc", "plain_text", "vlm"])
|
||||
|
||||
if pdf_parse_method not in ["deepdoc", "plain_text"]:
|
||||
self.check_empty(pdf_config.get("vlm_name"), "VLM")
|
||||
self.check_empty(pdf_config.get("llm_id"), "VLM")
|
||||
|
||||
pdf_language = pdf_config.get("lang", "")
|
||||
self.check_empty(pdf_language, "Language")
|
||||
@ -117,7 +163,23 @@ class ParserParam(ProcessParamBase):
|
||||
image_config = self.setups.get("image", "")
|
||||
if image_config:
|
||||
image_parse_method = image_config.get("parse_method", "")
|
||||
self.check_valid_value(image_parse_method.lower(), "Parse method abnormal.", ["ocr"])
|
||||
self.check_valid_value(image_parse_method.lower(), "Parse method abnormal.", ["ocr", "vlm"])
|
||||
if image_parse_method not in ["ocr"]:
|
||||
self.check_empty(image_config.get("llm_id"), "VLM")
|
||||
|
||||
image_language = image_config.get("lang", "")
|
||||
self.check_empty(image_language, "Language")
|
||||
|
||||
text_config = self.setups.get("text", "")
|
||||
if text_config:
|
||||
text_output_format = text_config.get("output_format", "")
|
||||
self.check_valid_value(text_output_format, "Text output format abnormal.", self.allowed_output_format["text"])
|
||||
|
||||
audio_config = self.setups.get("audio", "")
|
||||
if audio_config:
|
||||
self.check_empty(audio_config.get("llm_id"), "VLM")
|
||||
audio_language = audio_config.get("lang", "")
|
||||
self.check_empty(audio_language, "Language")
|
||||
|
||||
def get_input_form(self) -> dict[str, dict]:
|
||||
return {}
|
||||
@ -126,10 +188,8 @@ class ParserParam(ProcessParamBase):
|
||||
class Parser(ProcessBase):
|
||||
component_name = "Parser"
|
||||
|
||||
def _pdf(self, from_upstream: ParserFromUpstream):
|
||||
def _pdf(self, name, blob):
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PDF.")
|
||||
|
||||
blob = from_upstream.blob
|
||||
conf = self._param.setups["pdf"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
@ -139,8 +199,8 @@ class Parser(ProcessBase):
|
||||
lines, _ = PlainParser()(blob)
|
||||
bboxes = [{"text": t} for t, _ in lines]
|
||||
else:
|
||||
assert conf.get("vlm_name")
|
||||
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("vlm_name"), lang=self._param.setups["pdf"].get("lang"))
|
||||
assert conf.get("llm_id")
|
||||
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("llm_id"), lang=self._param.setups["pdf"].get("lang"))
|
||||
lines, _ = VisionParser(vision_model=vision_model)(blob, callback=self.callback)
|
||||
bboxes = []
|
||||
for t, poss in lines:
|
||||
@ -149,6 +209,7 @@ class Parser(ProcessBase):
|
||||
|
||||
if conf.get("output_format") == "json":
|
||||
self.set_output("json", bboxes)
|
||||
|
||||
if conf.get("output_format") == "markdown":
|
||||
mkdn = ""
|
||||
for b in bboxes:
|
||||
@ -160,14 +221,10 @@ class Parser(ProcessBase):
|
||||
mkdn += b.get("text", "") + "\n"
|
||||
self.set_output("markdown", mkdn)
|
||||
|
||||
def _spreadsheet(self, from_upstream: ParserFromUpstream):
|
||||
def _spreadsheet(self, name, blob):
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Spreadsheet.")
|
||||
|
||||
blob = from_upstream.blob
|
||||
conf = self._param.setups["spreadsheet"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
print("spreadsheet {conf=}", flush=True)
|
||||
spreadsheet_parser = ExcelParser()
|
||||
if conf.get("output_format") == "html":
|
||||
html = spreadsheet_parser.html(blob, 1000000000)
|
||||
@ -177,19 +234,13 @@ class Parser(ProcessBase):
|
||||
elif conf.get("output_format") == "markdown":
|
||||
self.set_output("markdown", spreadsheet_parser.markdown(blob))
|
||||
|
||||
def _word(self, from_upstream: ParserFromUpstream):
|
||||
def _word(self, name, blob):
|
||||
from tika import parser as word_parser
|
||||
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
|
||||
|
||||
blob = from_upstream.blob
|
||||
name = from_upstream.name
|
||||
conf = self._param.setups["word"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
print("word {conf=}", flush=True)
|
||||
doc_parsed = word_parser.from_buffer(blob)
|
||||
|
||||
sections = []
|
||||
if doc_parsed.get("content"):
|
||||
sections = doc_parsed["content"].split("\n")
|
||||
@ -202,26 +253,18 @@ class Parser(ProcessBase):
|
||||
if conf.get("output_format") == "json":
|
||||
self.set_output("json", sections)
|
||||
|
||||
def _markdown(self, from_upstream: ParserFromUpstream):
|
||||
def _markdown(self, name, blob):
|
||||
from functools import reduce
|
||||
|
||||
from rag.app.naive import Markdown as naive_markdown_parser
|
||||
from rag.nlp import concat_img
|
||||
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
|
||||
|
||||
blob = from_upstream.blob
|
||||
name = from_upstream.name
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a markdown.")
|
||||
conf = self._param.setups["markdown"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
print("markdown {conf=}", flush=True)
|
||||
|
||||
markdown_parser = naive_markdown_parser()
|
||||
sections, tables = markdown_parser(name, blob, separate_tables=False)
|
||||
|
||||
# json
|
||||
assert conf.get("output_format") == "json", "have to be json for doc"
|
||||
if conf.get("output_format") == "json":
|
||||
json_results = []
|
||||
|
||||
@ -239,14 +282,86 @@ class Parser(ProcessBase):
|
||||
json_results.append(json_result)
|
||||
|
||||
self.set_output("json", json_results)
|
||||
else:
|
||||
self.set_output("text", "\n".join([section_text for section_text, _ in sections]))
|
||||
|
||||
def _text(self, name, blob):
|
||||
from deepdoc.parser.utils import get_text
|
||||
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a text.")
|
||||
conf = self._param.setups["text"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
# parse binary to text
|
||||
text_content = get_text(name, binary=blob)
|
||||
|
||||
if conf.get("output_format") == "json":
|
||||
result = [{"text": text_content}]
|
||||
self.set_output("json", result)
|
||||
else:
|
||||
result = text_content
|
||||
self.set_output("text", result)
|
||||
|
||||
def _image(self, from_upstream: ParserFromUpstream):
|
||||
from deepdoc.vision import OCR
|
||||
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on an image.")
|
||||
|
||||
blob = from_upstream.blob
|
||||
conf = self._param.setups["image"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
img = Image.open(io.BytesIO(blob)).convert("RGB")
|
||||
lang = conf["lang"]
|
||||
|
||||
if conf["parse_method"] == "ocr":
|
||||
# use ocr, recognize chars only
|
||||
ocr = OCR()
|
||||
bxs = ocr(np.array(img)) # return boxes and recognize result
|
||||
txt = "\n".join([t[0] for _, t in bxs if t[0]])
|
||||
|
||||
else:
|
||||
# use VLM to describe the picture
|
||||
cv_model = LLMBundle(self._canvas.get_tenant_id(), LLMType.IMAGE2TEXT, llm_name=conf["llm_id"],lang=lang)
|
||||
img_binary = io.BytesIO()
|
||||
img.save(img_binary, format="JPEG")
|
||||
img_binary.seek(0)
|
||||
txt = cv_model.describe(img_binary.read())
|
||||
|
||||
self.set_output("text", txt)
|
||||
|
||||
def _audio(self, from_upstream: ParserFromUpstream):
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on an audio.")
|
||||
|
||||
blob = from_upstream.blob
|
||||
name = from_upstream.name
|
||||
conf = self._param.setups["audio"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
lang = conf["lang"]
|
||||
_, ext = os.path.splitext(name)
|
||||
with tempfile.NamedTemporaryFile(suffix=ext) as tmpf:
|
||||
tmpf.write(blob)
|
||||
tmpf.flush()
|
||||
tmp_path = os.path.abspath(tmpf.name)
|
||||
|
||||
seq2txt_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.SPEECH2TEXT, lang=lang)
|
||||
txt = seq2txt_mdl.transcription(tmp_path)
|
||||
|
||||
self.set_output("text", txt)
|
||||
|
||||
async def _invoke(self, **kwargs):
|
||||
function_map = {
|
||||
"pdf": self._pdf,
|
||||
"markdown": self._markdown,
|
||||
"spreadsheet": self._spreadsheet,
|
||||
"word": self._word
|
||||
"word": self._word,
|
||||
"text": self._text,
|
||||
"image": self._image,
|
||||
"audio": self._audio,
|
||||
}
|
||||
try:
|
||||
from_upstream = ParserFromUpstream.model_validate(kwargs)
|
||||
@ -254,8 +369,20 @@ class Parser(ProcessBase):
|
||||
self.set_output("_ERROR", f"Input error: {str(e)}")
|
||||
return
|
||||
|
||||
name = from_upstream.name
|
||||
if self._canvas._doc_id:
|
||||
b, n = File2DocumentService.get_storage_address(doc_id=self._canvas._doc_id)
|
||||
blob = STORAGE_IMPL.get(b, n)
|
||||
else:
|
||||
blob = FileService.get_blob(from_upstream.file["created_by"], from_upstream.file["id"])
|
||||
|
||||
for p_type, conf in self._param.setups.items():
|
||||
if from_upstream.name.split(".")[-1].lower() not in conf.get("suffix", []):
|
||||
continue
|
||||
await trio.to_thread.run_sync(function_map[p_type], from_upstream)
|
||||
await trio.to_thread.run_sync(function_map[p_type], name, blob)
|
||||
break
|
||||
|
||||
outs = self.output()
|
||||
async with trio.open_nursery() as nursery:
|
||||
for d in outs.get("json", []):
|
||||
nursery.start_soon(image2id, d, partial(STORAGE_IMPL.put), "_image_temps", get_uuid())
|
||||
|
||||
Reference in New Issue
Block a user