Refa: add result to callback for agent tool use. (#9137)

### What problem does this PR solve?


### Type of change

- [x] Refactoring
This commit is contained in:
Kevin Hu
2025-08-01 21:49:39 +08:00
committed by GitHub
parent c5823a33a3
commit a16cd4f110
26 changed files with 10875 additions and 897 deletions

View File

@ -252,15 +252,6 @@ class Canvas:
"created_at": cpn_obj.output("_created_time"), "created_at": cpn_obj.output("_created_time"),
}) })
def _append_path(cpn_id):
if self.path[-1] == cpn_id:
return
self.path.append(cpn_id)
def _extend_path(cpn_ids):
for cpn_id in cpn_ids:
_append_path(cpn_id)
self.error = "" self.error = ""
idx = len(self.path) - 1 idx = len(self.path) - 1
partials = [] partials = []
@ -279,10 +270,11 @@ class Canvas:
# post processing of components invocation # post processing of components invocation
for i in range(idx, to): for i in range(idx, to):
cpn = self.get_component(self.path[i]) cpn = self.get_component(self.path[i])
if cpn["obj"].component_name.lower() == "message": cpn_obj = self.get_component_obj(self.path[i])
if isinstance(cpn["obj"].output("content"), partial): if cpn_obj.component_name.lower() == "message":
if isinstance(cpn_obj.output("content"), partial):
_m = "" _m = ""
for m in cpn["obj"].output("content")(): for m in cpn_obj.output("content")():
if not m: if not m:
continue continue
if m == "<think>": if m == "<think>":
@ -292,48 +284,65 @@ class Canvas:
else: else:
yield decorate("message", {"content": m}) yield decorate("message", {"content": m})
_m += m _m += m
cpn["obj"].set_output("content", _m) cpn_obj.set_output("content", _m)
else: else:
yield decorate("message", {"content": cpn["obj"].output("content")}) yield decorate("message", {"content": cpn_obj.output("content")})
yield decorate("message_end", {"reference": self.get_reference()}) yield decorate("message_end", {"reference": self.get_reference()})
while partials: while partials:
_cpn = self.get_component(partials[0]) _cpn_obj = self.get_component_obj(partials[0])
if isinstance(_cpn["obj"].output("content"), partial): if isinstance(_cpn_obj.output("content"), partial):
break break
yield _node_finished(_cpn["obj"]) yield _node_finished(_cpn_obj)
partials.pop(0) partials.pop(0)
if cpn["obj"].error(): other_branch = False
ex = cpn["obj"].exception_handler() if cpn_obj.error():
if ex and ex["comment"]: ex = cpn_obj.exception_handler()
yield decorate("message", {"content": ex["comment"]})
yield decorate("message_end", {})
if ex and ex["goto"]: if ex and ex["goto"]:
self.path.append(ex["goto"]) self.path.extend(ex["goto"])
elif not ex or not ex["default_value"]: other_branch = True
self.error = cpn["obj"].error() elif ex and ex["default_value"]:
yield decorate("message", {"content": ex["default_value"]})
yield decorate("message_end", {})
else:
self.error = cpn_obj.error()
if cpn["obj"].component_name.lower() != "iteration": if cpn_obj.component_name.lower() != "iteration":
if isinstance(cpn["obj"].output("content"), partial): if isinstance(cpn_obj.output("content"), partial):
if self.error: if self.error:
cpn["obj"].set_output("content", None) cpn_obj.set_output("content", None)
yield _node_finished(cpn["obj"]) yield _node_finished(cpn_obj)
else: else:
partials.append(self.path[i]) partials.append(self.path[i])
else: else:
yield _node_finished(cpn["obj"]) yield _node_finished(cpn_obj)
if cpn["obj"].component_name.lower() == "iterationitem" and cpn["obj"].end(): def _append_path(cpn_id):
iter = cpn["obj"].get_parent() nonlocal other_branch
if other_branch:
return
if self.path[-1] == cpn_id:
return
self.path.append(cpn_id)
def _extend_path(cpn_ids):
nonlocal other_branch
if other_branch:
return
for cpn_id in cpn_ids:
_append_path(cpn_id)
if cpn_obj.component_name.lower() == "iterationitem" and cpn_obj.end():
iter = cpn_obj.get_parent()
yield _node_finished(iter) yield _node_finished(iter)
_extend_path(self.get_component(cpn["parent_id"])["downstream"]) _extend_path(self.get_component(cpn["parent_id"])["downstream"])
elif cpn["obj"].component_name.lower() in ["categorize", "switch"]: elif cpn_obj.component_name.lower() in ["categorize", "switch"]:
_extend_path(cpn["obj"].output("_next")) _extend_path(cpn_obj.output("_next"))
elif cpn["obj"].component_name.lower() == "iteration": elif cpn_obj.component_name.lower() == "iteration":
_append_path(cpn["obj"].get_start()) _append_path(cpn_obj.get_start())
elif not cpn["downstream"] and cpn["obj"].get_parent(): elif not cpn["downstream"] and cpn_obj.get_parent():
_append_path(cpn["obj"].get_parent().get_start()) _append_path(cpn_obj.get_parent().get_start())
else: else:
_extend_path(cpn["downstream"]) _extend_path(cpn["downstream"])
@ -342,13 +351,13 @@ class Canvas:
break break
idx = to idx = to
if any([self.get_component(c)["obj"].component_name.lower() == "userfillup" for c in self.path[idx:]]): if any([self.get_component_obj(c).component_name.lower() == "userfillup" for c in self.path[idx:]]):
path = [c for c in self.path[idx:] if self.get_component(c)["obj"].component_name.lower() == "userfillup"] path = [c for c in self.path[idx:] if self.get_component(c)["obj"].component_name.lower() == "userfillup"]
path.extend([c for c in self.path[idx:] if self.get_component(c)["obj"].component_name.lower() != "userfillup"]) path.extend([c for c in self.path[idx:] if self.get_component(c)["obj"].component_name.lower() != "userfillup"])
another_inputs = {} another_inputs = {}
tips = "" tips = ""
for c in path: for c in path:
o = self.get_component(c)["obj"] o = self.get_component_obj(c)
if o.component_name.lower() == "userfillup": if o.component_name.lower() == "userfillup":
another_inputs.update(o.get_input_elements()) another_inputs.update(o.get_input_elements())
if o.get_param("enable_tips"): if o.get_param("enable_tips"):

View File

@ -157,7 +157,8 @@ class Agent(LLM, ToolBase):
prompt, msg = self._prepare_prompt_variables() prompt, msg = self._prepare_prompt_variables()
downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else [] downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else []
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not self._param.output_structure: ex = self.exception_handler()
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not self._param.output_structure and not (ex and ex["goto"]):
self.set_output("content", partial(self.stream_output_with_tools, prompt, msg)) self.set_output("content", partial(self.stream_output_with_tools, prompt, msg))
return return
@ -169,6 +170,9 @@ class Agent(LLM, ToolBase):
if ans.find("**ERROR**") >= 0: if ans.find("**ERROR**") >= 0:
logging.error(f"Agent._chat got error. response: {ans}") logging.error(f"Agent._chat got error. response: {ans}")
if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value())
else:
self.set_output("_ERROR", ans) self.set_output("_ERROR", ans)
return return
@ -182,6 +186,12 @@ class Agent(LLM, ToolBase):
answer_without_toolcall = "" answer_without_toolcall = ""
use_tools = [] use_tools = []
for delta_ans,_ in self._react_with_tools_streamly(msg, use_tools): for delta_ans,_ in self._react_with_tools_streamly(msg, use_tools):
if delta_ans.find("**ERROR**") >= 0:
if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value())
yield self.get_exception_default_value()
else:
self.set_output("_ERROR", delta_ans)
answer_without_toolcall += delta_ans answer_without_toolcall += delta_ans
yield delta_ans yield delta_ans
@ -204,8 +214,8 @@ class Agent(LLM, ToolBase):
hist = deepcopy(history) hist = deepcopy(history)
last_calling = "" last_calling = ""
if len(hist) > 3: if len(hist) > 3:
self.callback("Multi-turn conversation optimization", {}, " running ...")
user_request = full_question(messages=history, chat_mdl=self.chat_mdl) user_request = full_question(messages=history, chat_mdl=self.chat_mdl)
self.callback("Multi-turn conversation optimization", {}, user_request)
else: else:
user_request = history[-1]["content"] user_request = history[-1]["content"]
@ -241,9 +251,6 @@ class Agent(LLM, ToolBase):
cited = True cited = True
yield "", token_count yield "", token_count
if not cited and need2cite:
self.callback("gen_citations", {}, " running ...")
_hist = hist _hist = hist
if len(hist) > 12: if len(hist) > 12:
_hist = [hist[0], hist[1], *hist[-10:]] _hist = [hist[0], hist[1], *hist[-10:]]
@ -255,8 +262,12 @@ class Agent(LLM, ToolBase):
if not need2cite or cited: if not need2cite or cited:
return return
txt = ""
for delta_ans in self._gen_citations(entire_txt): for delta_ans in self._gen_citations(entire_txt):
yield delta_ans, 0 yield delta_ans, 0
txt += delta_ans
self.callback("gen_citations", {}, txt)
def append_user_content(hist, content): def append_user_content(hist, content):
if hist[-1]["role"] == "user": if hist[-1]["role"] == "user":
@ -264,8 +275,8 @@ class Agent(LLM, ToolBase):
else: else:
hist.append({"role": "user", "content": content}) hist.append({"role": "user", "content": content})
self.callback("analyze_task", {}, " running ...")
task_desc = analyze_task(self.chat_mdl, user_request, tool_metas) task_desc = analyze_task(self.chat_mdl, user_request, tool_metas)
self.callback("analyze_task", {}, task_desc)
for _ in range(self._param.max_rounds + 1): for _ in range(self._param.max_rounds + 1):
response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc) response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc)
# self.callback("next_step", {}, str(response)[:256]+"...") # self.callback("next_step", {}, str(response)[:256]+"...")

View File

@ -44,7 +44,6 @@ class ComponentParamBase(ABC):
self.delay_after_error = 2.0 self.delay_after_error = 2.0
self.exception_method = None self.exception_method = None
self.exception_default_value = None self.exception_default_value = None
self.exception_comment = None
self.exception_goto = None self.exception_goto = None
self.debug_inputs = {} self.debug_inputs = {}
@ -97,6 +96,14 @@ class ComponentParamBase(ABC):
def as_dict(self): def as_dict(self):
def _recursive_convert_obj_to_dict(obj): def _recursive_convert_obj_to_dict(obj):
ret_dict = {} ret_dict = {}
if isinstance(obj, dict):
for k,v in obj.items():
if isinstance(v, dict) or (v and type(v).__name__ not in dir(builtins)):
ret_dict[k] = _recursive_convert_obj_to_dict(v)
else:
ret_dict[k] = v
return ret_dict
for attr_name in list(obj.__dict__): for attr_name in list(obj.__dict__):
if attr_name in [_FEEDED_DEPRECATED_PARAMS, _DEPRECATED_PARAMS, _USER_FEEDED_PARAMS, _IS_RAW_CONF]: if attr_name in [_FEEDED_DEPRECATED_PARAMS, _DEPRECATED_PARAMS, _USER_FEEDED_PARAMS, _IS_RAW_CONF]:
continue continue
@ -105,7 +112,7 @@ class ComponentParamBase(ABC):
if isinstance(attr, pd.DataFrame): if isinstance(attr, pd.DataFrame):
ret_dict[attr_name] = attr.to_dict() ret_dict[attr_name] = attr.to_dict()
continue continue
if attr and type(attr).__name__ not in dir(builtins): if isinstance(attr, dict) or (attr and type(attr).__name__ not in dir(builtins)):
ret_dict[attr_name] = _recursive_convert_obj_to_dict(attr) ret_dict[attr_name] = _recursive_convert_obj_to_dict(attr)
else: else:
ret_dict[attr_name] = attr ret_dict[attr_name] = attr
@ -415,7 +422,10 @@ class ComponentBase(ABC):
try: try:
self._invoke(**kwargs) self._invoke(**kwargs)
except Exception as e: except Exception as e:
self._param.outputs["_ERROR"] = {"value": str(e)} if self.get_exception_default_value():
self.set_exception_default_value()
else:
self.set_output("_ERROR", str(e))
logging.exception(e) logging.exception(e)
self._param.debug_inputs = {} self._param.debug_inputs = {}
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time")) self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
@ -427,7 +437,7 @@ class ComponentBase(ABC):
def output(self, var_nm: str=None) -> Union[dict[str, Any], Any]: def output(self, var_nm: str=None) -> Union[dict[str, Any], Any]:
if var_nm: if var_nm:
return self._param.outputs.get(var_nm, {}).get("value") return self._param.outputs.get(var_nm, {}).get("value", "")
return {k: o.get("value") for k,o in self._param.outputs.items()} return {k: o.get("value") for k,o in self._param.outputs.items()}
def set_output(self, key: str, value: Any): def set_output(self, key: str, value: Any):
@ -520,7 +530,7 @@ class ComponentBase(ABC):
def string_format(content: str, kv: dict[str, str]) -> str: def string_format(content: str, kv: dict[str, str]) -> str:
for n, v in kv.items(): for n, v in kv.items():
content = re.sub( content = re.sub(
r"\{%s\}" % re.escape(n), re.escape(v), content r"\{%s\}" % re.escape(n), v, content
) )
return content return content
@ -529,13 +539,17 @@ class ComponentBase(ABC):
return return
return { return {
"goto": self._param.exception_goto, "goto": self._param.exception_goto,
"comment": self._param.exception_comment,
"default_value": self._param.exception_default_value "default_value": self._param.exception_default_value
} }
def get_exception_default_value(self): def get_exception_default_value(self):
if self._param.exception_method != "comment":
return ""
return self._param.exception_default_value return self._param.exception_default_value
def set_exception_default_value(self):
self.set_output("result", self.get_exception_default_value())
@abstractmethod @abstractmethod
def thoughts(self) -> str: def thoughts(self) -> str:
... ...

View File

@ -46,4 +46,4 @@ class Begin(UserFillUp):
self.set_input_value(k, v) self.set_input_value(k, v)
def thoughts(self) -> str: def thoughts(self) -> str:
return "☕ Here we go..." return ""

View File

@ -22,6 +22,8 @@ from typing import Any
import json_repair import json_repair
from copy import deepcopy from copy import deepcopy
from functools import partial from functools import partial
from api.db import LLMType
from api.db.services.llm_service import LLMBundle, TenantLLMService from api.db.services.llm_service import LLMBundle, TenantLLMService
from agent.component.base import ComponentBase, ComponentParamBase from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout from api.utils.api_utils import timeout
@ -49,27 +51,33 @@ class LLMParam(ComponentParamBase):
self.visual_files_var = None self.visual_files_var = None
def check(self): def check(self):
self.check_decimal_float(self.temperature, "[Agent] Temperature") self.check_decimal_float(float(self.temperature), "[Agent] Temperature")
self.check_decimal_float(self.presence_penalty, "[Agent] Presence penalty") self.check_decimal_float(float(self.presence_penalty), "[Agent] Presence penalty")
self.check_decimal_float(self.frequency_penalty, "[Agent] Frequency penalty") self.check_decimal_float(float(self.frequency_penalty), "[Agent] Frequency penalty")
self.check_nonnegative_number(self.max_tokens, "[Agent] Max tokens") self.check_nonnegative_number(int(self.max_tokens), "[Agent] Max tokens")
self.check_decimal_float(self.top_p, "[Agent] Top P") self.check_decimal_float(float(self.top_p), "[Agent] Top P")
self.check_empty(self.llm_id, "[Agent] LLM") self.check_empty(self.llm_id, "[Agent] LLM")
self.check_empty(self.sys_prompt, "[Agent] System prompt") self.check_empty(self.sys_prompt, "[Agent] System prompt")
self.check_empty(self.prompts, "[Agent] User prompt") self.check_empty(self.prompts, "[Agent] User prompt")
def gen_conf(self): def gen_conf(self):
conf = {} conf = {}
if self.max_tokens > 0: def get_attr(nm):
conf["max_tokens"] = self.max_tokens try:
if self.temperature > 0: return getattr(self, nm)
conf["temperature"] = self.temperature except Exception:
if self.top_p > 0: pass
conf["top_p"] = self.top_p
if self.presence_penalty > 0: if int(self.max_tokens) > 0 and get_attr("maxTokensEnabled"):
conf["presence_penalty"] = self.presence_penalty conf["max_tokens"] = int(self.max_tokens)
if self.frequency_penalty > 0: if float(self.temperature) > 0 and get_attr("temperatureEnabled"):
conf["frequency_penalty"] = self.frequency_penalty conf["temperature"] = float(self.temperature)
if float(self.top_p) > 0 and get_attr("topPEnabled"):
conf["top_p"] = float(self.top_p)
if float(self.presence_penalty) > 0 and get_attr("presencePenaltyEnabled"):
conf["presence_penalty"] = float(self.presence_penalty)
if float(self.frequency_penalty) > 0 and get_attr("frequencyPenaltyEnabled"):
conf["frequency_penalty"] = float(self.frequency_penalty)
return conf return conf
@ -112,6 +120,12 @@ class LLM(ComponentBase):
if not self.imgs: if not self.imgs:
self.imgs = [] self.imgs = []
self.imgs = [img for img in self.imgs if img[:len(""
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,915 @@
{
"id": 12,
"title": "Generate SEO Blog",
"description": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"canvas_type": "Marketing",
"dsl": {
"components": {
"Agent:BetterSitesSend": {
"downstream": [
"Agent:EagerNailsRemain"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.3,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Balance",
"presencePenaltyEnabled": false,
"presence_penalty": 0.2,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Outline_Agent**, responsible for generating a clear and SEO-optimized blog outline based on the user's parsed writing intent and keyword strategy.\n\n# Tool Access:\n\n- You have access to a search tool called `Tavily Search`.\n\n- If you are unsure how to structure a section, you may call this tool to search for related blog outlines or content from Google.\n\n- Do not overuse it. Your job is to extract **structure**, not to write paragraphs.\n\n\n# Goals\n\n1. Create a well-structured outline with appropriate H2 and H3 headings.\n\n2. Ensure logical flow from introduction to conclusion.\n\n3. Assign 1\u20132 suggested long-tail keywords to each major section for SEO alignment.\n\n4. Make the structure suitable for downstream paragraph writing.\n\n\n\n\n#Note\n\n- Use concise, scannable section titles.\n\n- Do not write full paragraphs.\n\n- Prioritize clarity, logical progression, and SEO alignment.\n\n\n\n- If the blog type is \u201cTutorial\u201d or \u201cHow-to\u201d, include step-based sections.\n\n\n# Input\n\nYou will receive:\n\n- Writing Type (e.g., Tutorial, Informative Guide)\n\n- Target Audience\n\n- User Intent Summary\n\n- 3\u20135 long-tail keywords\n\n\nUse this information to design a structure that both informs readers and maximizes search engine visibility.\n\n# Output Format\n\n```markdown\n\n## Blog Title (suggested)\n\n[Give a short, SEO-friendly title suggestion]\n\n## Outline\n\n### Introduction\n\n- Purpose of the article\n\n- Brief context\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 1]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 2]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 3]\n\n- [Optional H3 Subsection Title A]\n\n - [Explanation of sub-point]\n\n- [Optional H3 Subsection Title B]\n\n - [Explanation of sub-point]\n\n- **Suggested keywords**: [keyword1]\n\n### Conclusion\n\n- Recap key takeaways\n\n- Optional CTA (Call to Action)\n\n- **Suggested keywords**: [keyword3]\n\n",
"temperature": 0.5,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.85,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:ClearRabbitsScream"
]
},
"Agent:ClearRabbitsScream": {
"downstream": [
"Agent:BetterSitesSend"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 1,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The user query is {sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Parse_And_Keyword_Agent**, responsible for interpreting a user's blog writing request and generating a structured writing intent summary and keyword strategy for SEO-optimized content generation.\n\n# Goals\n\n1. Extract and infer the user's true writing intent, even if the input is informal or vague.\n\n2. Identify the writing type, target audience, and implied goal.\n\n3. Suggest 3\u20135 long-tail keywords based on the input and context.\n\n4. Output all data in a Markdown format for downstream agents.\n\n# Operating Guidelines\n\n\n- If the user's input lacks clarity, make reasonable and **conservative** assumptions based on SEO best practices.\n\n- Always choose one clear \"Writing Type\" from the list below.\n\n- Your job is not to write the blog \u2014 only to structure the brief.\n\n# Output Format\n\n```markdown\n## Writing Type\n\n[Choose one: Tutorial / Informative Guide / Marketing Content / Case Study / Opinion Piece / How-to / Comparison Article]\n\n## Target Audience\n\n[Try to be specific based on clues in the input: e.g., marketing managers, junior developers, SEO beginners]\n\n## User Intent Summary\n\n[A 1\u20132 sentence summary of what the user wants to achieve with the blog post]\n\n## Suggested Long-tail Keywords\n\n- keyword 1\n\n- keyword 2\n\n- keyword 3\n\n- keyword 4 (optional)\n\n- keyword 5 (optional)\n\n\n\n\n## Input Examples (and how to handle them)\n\nInput: \"I want to write about RAGFlow.\"\n\u2192 Output: Informative Guide, Audience: AI developers, Intent: explain what RAGFlow is and its use cases\n\nInput: \"Need a blog to promote our prompt design tool.\"\n\u2192 Output: Marketing Content, Audience: product managers or tool adopters, Intent: raise awareness and interest in the product\n\n\n\nInput: \"How to get more Google traffic using AI\"\n\u2192 Output: How-to, Audience: SEO marketers, Intent: guide readers on applying AI for SEO growth",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Agent:EagerNailsRemain": {
"downstream": [
"Agent:LovelyHeadsOwn"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Body_Agent**, responsible for generating the full content of each section of an SEO-optimized blog based on the provided outline and keyword strategy.\n\n# Tool Access:\n\nYou can use the `Tavily Search` tool to retrieve relevant content, statistics, or examples to support each section you're writing.\n\nUse it **only** when the provided outline lacks enough information, or if the section requires factual grounding.\n\nAlways cite the original link or indicate source where possible.\n\n\n# Goals\n\n1. Write each section (based on H2/H3 structure) as a complete and natural blog paragraph.\n\n2. Integrate the suggested long-tail keywords naturally into each section.\n\n3. When appropriate, use the `Tavily Search` tool to enrich your writing with relevant facts, examples, or quotes.\n\n4. Ensure each section is clear, engaging, and informative, suitable for both human readers and search engines.\n\n\n# Style Guidelines\n\n- Write in a tone appropriate to the audience. Be explanatory, not promotional, unless it's a marketing blog.\n\n- Avoid generic filler content. Prioritize clarity, structure, and value.\n\n- Ensure SEO keywords are embedded seamlessly, not forcefully.\n\n\n\n- Maintain writing rhythm. Vary sentence lengths. Use transitions between ideas.\n\n\n# Input\n\n\nYou will receive:\n\n- Blog title\n\n- Structured outline (including section titles, keywords, and descriptions)\n\n- Target audience\n\n- Blog type and user intent\n\nYou must **follow the outline strictly**. Write content **section-by-section**, based on the structure.\n\n\n# Output Format\n\n```markdown\n\n## H2: [Section Title]\n\n[Your generated content for this section \u2014 500-600 words, using keywords naturally.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:BetterSitesSend"
]
},
"Agent:LovelyHeadsOwn": {
"downstream": [
"Message:LegalBeansBet"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Editor_Agent**, responsible for finalizing the blog post for both human readability and SEO effectiveness.\n\n# Goals\n\n1. Polish the entire blog content for clarity, coherence, and style.\n\n2. Improve transitions between sections, ensure logical flow.\n\n3. Verify that keywords are used appropriately and effectively.\n\n4. Conduct a lightweight SEO audit \u2014 checking keyword density, structure (H1/H2/H3), and overall searchability.\n\n\n\n# Style Guidelines\n\n- Be precise. Avoid bloated or vague language.\n\n- Maintain an informative and engaging tone, suitable to the target audience.\n\n- Do not remove keywords unless absolutely necessary for clarity.\n\n- Ensure paragraph flow and section continuity.\n\n\n# Input\n\nYou will receive:\n\n- Full blog content, written section-by-section\n\n- Original outline with suggested keywords\n\n- Target audience and writing type\n\n# Output Format\n\n```markdown\n\n[The revised, fully polished blog post content goes here.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:EagerNailsRemain"
]
},
"Message:LegalBeansBet": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:LovelyHeadsOwn@content}"
]
}
},
"upstream": [
"Agent:LovelyHeadsOwn"
]
},
"begin": {
"downstream": [
"Agent:ClearRabbitsScream"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SEO blog assistant.\n\nTo get started, please tell me:\n1. What topic you want the blog to cover\n2. Who is the target audience\n3. What you hope to achieve with this blog (e.g., SEO traffic, teaching beginners, promoting a product)\n"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:ClearRabbitsScreamend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:ClearRabbitsScream",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:ClearRabbitsScreamstart-Agent:BetterSitesSendend",
"source": "Agent:ClearRabbitsScream",
"sourceHandle": "start",
"target": "Agent:BetterSitesSend",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:BetterSitesSendtool-Tool:SharpPensBurnend",
"source": "Agent:BetterSitesSend",
"sourceHandle": "tool",
"target": "Tool:SharpPensBurn",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:BetterSitesSendstart-Agent:EagerNailsRemainend",
"source": "Agent:BetterSitesSend",
"sourceHandle": "start",
"target": "Agent:EagerNailsRemain",
"targetHandle": "end"
},
{
"id": "xy-edge__Agent:EagerNailsRemaintool-Tool:WickedDeerHealend",
"source": "Agent:EagerNailsRemain",
"sourceHandle": "tool",
"target": "Tool:WickedDeerHeal",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:EagerNailsRemainstart-Agent:LovelyHeadsOwnend",
"source": "Agent:EagerNailsRemain",
"sourceHandle": "start",
"target": "Agent:LovelyHeadsOwn",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:LovelyHeadsOwnstart-Message:LegalBeansBetend",
"source": "Agent:LovelyHeadsOwn",
"sourceHandle": "start",
"target": "Message:LegalBeansBet",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SEO blog assistant.\n\nTo get started, please tell me:\n1. What topic you want the blog to cover\n2. Who is the target audience\n3. What you hope to achieve with this blog (e.g., SEO traffic, teaching beginners, promoting a product)\n"
},
"label": "Begin",
"name": "begin"
},
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 50,
"y": 200
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 1,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The user query is {sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Parse_And_Keyword_Agent**, responsible for interpreting a user's blog writing request and generating a structured writing intent summary and keyword strategy for SEO-optimized content generation.\n\n# Goals\n\n1. Extract and infer the user's true writing intent, even if the input is informal or vague.\n\n2. Identify the writing type, target audience, and implied goal.\n\n3. Suggest 3\u20135 long-tail keywords based on the input and context.\n\n4. Output all data in a Markdown format for downstream agents.\n\n# Operating Guidelines\n\n\n- If the user's input lacks clarity, make reasonable and **conservative** assumptions based on SEO best practices.\n\n- Always choose one clear \"Writing Type\" from the list below.\n\n- Your job is not to write the blog \u2014 only to structure the brief.\n\n# Output Format\n\n```markdown\n## Writing Type\n\n[Choose one: Tutorial / Informative Guide / Marketing Content / Case Study / Opinion Piece / How-to / Comparison Article]\n\n## Target Audience\n\n[Try to be specific based on clues in the input: e.g., marketing managers, junior developers, SEO beginners]\n\n## User Intent Summary\n\n[A 1\u20132 sentence summary of what the user wants to achieve with the blog post]\n\n## Suggested Long-tail Keywords\n\n- keyword 1\n\n- keyword 2\n\n- keyword 3\n\n- keyword 4 (optional)\n\n- keyword 5 (optional)\n\n\n\n\n## Input Examples (and how to handle them)\n\nInput: \"I want to write about RAGFlow.\"\n\u2192 Output: Informative Guide, Audience: AI developers, Intent: explain what RAGFlow is and its use cases\n\nInput: \"Need a blog to promote our prompt design tool.\"\n\u2192 Output: Marketing Content, Audience: product managers or tool adopters, Intent: raise awareness and interest in the product\n\n\n\nInput: \"How to get more Google traffic using AI\"\n\u2192 Output: How-to, Audience: SEO marketers, Intent: guide readers on applying AI for SEO growth",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Parse And Keyword Agent"
},
"dragging": false,
"id": "Agent:ClearRabbitsScream",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 344.7766966202233,
"y": 234.82202253184496
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.3,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Balance",
"presencePenaltyEnabled": false,
"presence_penalty": 0.2,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Outline_Agent**, responsible for generating a clear and SEO-optimized blog outline based on the user's parsed writing intent and keyword strategy.\n\n# Tool Access:\n\n- You have access to a search tool called `Tavily Search`.\n\n- If you are unsure how to structure a section, you may call this tool to search for related blog outlines or content from Google.\n\n- Do not overuse it. Your job is to extract **structure**, not to write paragraphs.\n\n\n# Goals\n\n1. Create a well-structured outline with appropriate H2 and H3 headings.\n\n2. Ensure logical flow from introduction to conclusion.\n\n3. Assign 1\u20132 suggested long-tail keywords to each major section for SEO alignment.\n\n4. Make the structure suitable for downstream paragraph writing.\n\n\n\n\n#Note\n\n- Use concise, scannable section titles.\n\n- Do not write full paragraphs.\n\n- Prioritize clarity, logical progression, and SEO alignment.\n\n\n\n- If the blog type is \u201cTutorial\u201d or \u201cHow-to\u201d, include step-based sections.\n\n\n# Input\n\nYou will receive:\n\n- Writing Type (e.g., Tutorial, Informative Guide)\n\n- Target Audience\n\n- User Intent Summary\n\n- 3\u20135 long-tail keywords\n\n\nUse this information to design a structure that both informs readers and maximizes search engine visibility.\n\n# Output Format\n\n```markdown\n\n## Blog Title (suggested)\n\n[Give a short, SEO-friendly title suggestion]\n\n## Outline\n\n### Introduction\n\n- Purpose of the article\n\n- Brief context\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 1]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 2]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 3]\n\n- [Optional H3 Subsection Title A]\n\n - [Explanation of sub-point]\n\n- [Optional H3 Subsection Title B]\n\n - [Explanation of sub-point]\n\n- **Suggested keywords**: [keyword1]\n\n### Conclusion\n\n- Recap key takeaways\n\n- Optional CTA (Call to Action)\n\n- **Suggested keywords**: [keyword3]\n\n",
"temperature": 0.5,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.85,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Outline Agent"
},
"dragging": false,
"id": "Agent:BetterSitesSend",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 613.4368763415628,
"y": 164.3074269048589
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_0"
},
"dragging": false,
"id": "Tool:SharpPensBurn",
"measured": {
"height": 44,
"width": 200
},
"position": {
"x": 580.1877078861457,
"y": 287.7669662022325
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Body_Agent**, responsible for generating the full content of each section of an SEO-optimized blog based on the provided outline and keyword strategy.\n\n# Tool Access:\n\nYou can use the `Tavily Search` tool to retrieve relevant content, statistics, or examples to support each section you're writing.\n\nUse it **only** when the provided outline lacks enough information, or if the section requires factual grounding.\n\nAlways cite the original link or indicate source where possible.\n\n\n# Goals\n\n1. Write each section (based on H2/H3 structure) as a complete and natural blog paragraph.\n\n2. Integrate the suggested long-tail keywords naturally into each section.\n\n3. When appropriate, use the `Tavily Search` tool to enrich your writing with relevant facts, examples, or quotes.\n\n4. Ensure each section is clear, engaging, and informative, suitable for both human readers and search engines.\n\n\n# Style Guidelines\n\n- Write in a tone appropriate to the audience. Be explanatory, not promotional, unless it's a marketing blog.\n\n- Avoid generic filler content. Prioritize clarity, structure, and value.\n\n- Ensure SEO keywords are embedded seamlessly, not forcefully.\n\n\n\n- Maintain writing rhythm. Vary sentence lengths. Use transitions between ideas.\n\n\n# Input\n\n\nYou will receive:\n\n- Blog title\n\n- Structured outline (including section titles, keywords, and descriptions)\n\n- Target audience\n\n- Blog type and user intent\n\nYou must **follow the outline strictly**. Write content **section-by-section**, based on the structure.\n\n\n# Output Format\n\n```markdown\n\n## H2: [Section Title]\n\n[Your generated content for this section \u2014 500-600 words, using keywords naturally.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Body Agent"
},
"dragging": false,
"id": "Agent:EagerNailsRemain",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 889.0614605692713,
"y": 247.00973041799065
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_1"
},
"dragging": false,
"id": "Tool:WickedDeerHeal",
"measured": {
"height": 44,
"width": 200
},
"position": {
"x": 853.2006404239659,
"y": 364.37541577229143
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Editor_Agent**, responsible for finalizing the blog post for both human readability and SEO effectiveness.\n\n# Goals\n\n1. Polish the entire blog content for clarity, coherence, and style.\n\n2. Improve transitions between sections, ensure logical flow.\n\n3. Verify that keywords are used appropriately and effectively.\n\n4. Conduct a lightweight SEO audit \u2014 checking keyword density, structure (H1/H2/H3), and overall searchability.\n\n\n\n# Style Guidelines\n\n- Be precise. Avoid bloated or vague language.\n\n- Maintain an informative and engaging tone, suitable to the target audience.\n\n- Do not remove keywords unless absolutely necessary for clarity.\n\n- Ensure paragraph flow and section continuity.\n\n\n# Input\n\nYou will receive:\n\n- Full blog content, written section-by-section\n\n- Original outline with suggested keywords\n\n- Target audience and writing type\n\n# Output Format\n\n```markdown\n\n[The revised, fully polished blog post content goes here.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Editor Agent"
},
"dragging": false,
"id": "Agent:LovelyHeadsOwn",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 1160.3332919804993,
"y": 149.50806732882472
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"content": [
"{Agent:LovelyHeadsOwn@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:LegalBeansBet",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 1370.6665839609984,
"y": 267.0323933738015
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"text": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You don\u2019t need any writing experience. Just provide a topic or short request \u2014 the system will handle the rest.\n\nThe process includes the following key stages:\n\n1. **Understanding your topic and goals**\n2. **Designing the blog structure**\n3. **Writing high-quality content**\n\n\n"
},
"label": "Note",
"name": "Workflow Overall Description"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 205,
"id": "Note:SlimyGhostsWear",
"measured": {
"height": 205,
"width": 415
},
"position": {
"x": -284.3143151688742,
"y": 150.47632147913419
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 415
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent reads the user\u2019s input and figures out what kind of blog needs to be written.\n\n**What it does**:\n- Understands the main topic you want to write about \n- Identifies who the blog is for (e.g., beginners, marketers, developers) \n- Determines the writing purpose (e.g., SEO traffic, product promotion, education) \n- Suggests 3\u20135 long-tail SEO keywords related to the topic"
},
"label": "Note",
"name": "Parse And Keyword Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 152,
"id": "Note:EmptyChairsShake",
"measured": {
"height": 152,
"width": 340
},
"position": {
"x": 295.04147626768133,
"y": 372.2755718118446
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 340
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent builds the blog structure \u2014 just like writing a table of contents before you start writing the full article.\n\n**What it does**:\n- Suggests a clear blog title that includes important keywords \n- Breaks the article into sections using H2 and H3 headings (like a professional blog layout) \n- Assigns 1\u20132 recommended keywords to each section to help with SEO \n- Follows the writing goal and target audience set in the previous step"
},
"label": "Note",
"name": "Outline Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 146,
"id": "Note:TallMelonsNotice",
"measured": {
"height": 146,
"width": 343
},
"position": {
"x": 598.5644991893463,
"y": 5.801054564756448
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 343
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent is responsible for writing the actual content of the blog \u2014 paragraph by paragraph \u2014 based on the outline created earlier.\n\n**What it does**:\n- Looks at each H2/H3 section in the outline \n- Writes 150\u2013220 words of clear, helpful, and well-structured content per section \n- Includes the suggested SEO keywords naturally (not keyword stuffing) \n- Uses real examples or facts if needed (by calling a web search tool like Tavily)"
},
"label": "Note",
"name": "Body Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 137,
"id": "Note:RipeCougarsBuild",
"measured": {
"height": 137,
"width": 319
},
"position": {
"x": 860.4854129814981,
"y": 427.2196835690842
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 319
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent reviews the entire blog draft to make sure it is smooth, professional, and SEO-friendly. It acts like a human editor before publishing.\n\n**What it does**:\n- Polishes the writing: improves sentence clarity, fixes awkward phrasing \n- Makes sure the content flows well from one section to the next \n- Double-checks keyword usage: are they present, natural, and not overused? \n- Verifies the blog structure (H1, H2, H3 headings) is correct \n- Adds two key SEO elements:\n - **Meta Title** (shows up in search results)\n - **Meta Description** (summary for Google and social sharing)"
},
"label": "Note",
"name": "Editor Agent"
},
"dragHandle": ".note-drag-handle",
"height": 146,
"id": "Note:OpenTurkeysSell",
"measured": {
"height": 146,
"width": 320
},
"position": {
"x": 1129,
"y": -30
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 320
}
]
},
"history": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

View File

@ -0,0 +1,915 @@
{
"id": 4,
"title": "Generate SEO Blog",
"description": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"canvas_type": "Recommended",
"dsl": {
"components": {
"Agent:BetterSitesSend": {
"downstream": [
"Agent:EagerNailsRemain"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.3,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Balance",
"presencePenaltyEnabled": false,
"presence_penalty": 0.2,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Outline_Agent**, responsible for generating a clear and SEO-optimized blog outline based on the user's parsed writing intent and keyword strategy.\n\n# Tool Access:\n\n- You have access to a search tool called `Tavily Search`.\n\n- If you are unsure how to structure a section, you may call this tool to search for related blog outlines or content from Google.\n\n- Do not overuse it. Your job is to extract **structure**, not to write paragraphs.\n\n\n# Goals\n\n1. Create a well-structured outline with appropriate H2 and H3 headings.\n\n2. Ensure logical flow from introduction to conclusion.\n\n3. Assign 1\u20132 suggested long-tail keywords to each major section for SEO alignment.\n\n4. Make the structure suitable for downstream paragraph writing.\n\n\n\n\n#Note\n\n- Use concise, scannable section titles.\n\n- Do not write full paragraphs.\n\n- Prioritize clarity, logical progression, and SEO alignment.\n\n\n\n- If the blog type is \u201cTutorial\u201d or \u201cHow-to\u201d, include step-based sections.\n\n\n# Input\n\nYou will receive:\n\n- Writing Type (e.g., Tutorial, Informative Guide)\n\n- Target Audience\n\n- User Intent Summary\n\n- 3\u20135 long-tail keywords\n\n\nUse this information to design a structure that both informs readers and maximizes search engine visibility.\n\n# Output Format\n\n```markdown\n\n## Blog Title (suggested)\n\n[Give a short, SEO-friendly title suggestion]\n\n## Outline\n\n### Introduction\n\n- Purpose of the article\n\n- Brief context\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 1]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 2]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 3]\n\n- [Optional H3 Subsection Title A]\n\n - [Explanation of sub-point]\n\n- [Optional H3 Subsection Title B]\n\n - [Explanation of sub-point]\n\n- **Suggested keywords**: [keyword1]\n\n### Conclusion\n\n- Recap key takeaways\n\n- Optional CTA (Call to Action)\n\n- **Suggested keywords**: [keyword3]\n\n",
"temperature": 0.5,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.85,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:ClearRabbitsScream"
]
},
"Agent:ClearRabbitsScream": {
"downstream": [
"Agent:BetterSitesSend"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 1,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The user query is {sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Parse_And_Keyword_Agent**, responsible for interpreting a user's blog writing request and generating a structured writing intent summary and keyword strategy for SEO-optimized content generation.\n\n# Goals\n\n1. Extract and infer the user's true writing intent, even if the input is informal or vague.\n\n2. Identify the writing type, target audience, and implied goal.\n\n3. Suggest 3\u20135 long-tail keywords based on the input and context.\n\n4. Output all data in a Markdown format for downstream agents.\n\n# Operating Guidelines\n\n\n- If the user's input lacks clarity, make reasonable and **conservative** assumptions based on SEO best practices.\n\n- Always choose one clear \"Writing Type\" from the list below.\n\n- Your job is not to write the blog \u2014 only to structure the brief.\n\n# Output Format\n\n```markdown\n## Writing Type\n\n[Choose one: Tutorial / Informative Guide / Marketing Content / Case Study / Opinion Piece / How-to / Comparison Article]\n\n## Target Audience\n\n[Try to be specific based on clues in the input: e.g., marketing managers, junior developers, SEO beginners]\n\n## User Intent Summary\n\n[A 1\u20132 sentence summary of what the user wants to achieve with the blog post]\n\n## Suggested Long-tail Keywords\n\n- keyword 1\n\n- keyword 2\n\n- keyword 3\n\n- keyword 4 (optional)\n\n- keyword 5 (optional)\n\n\n\n\n## Input Examples (and how to handle them)\n\nInput: \"I want to write about RAGFlow.\"\n\u2192 Output: Informative Guide, Audience: AI developers, Intent: explain what RAGFlow is and its use cases\n\nInput: \"Need a blog to promote our prompt design tool.\"\n\u2192 Output: Marketing Content, Audience: product managers or tool adopters, Intent: raise awareness and interest in the product\n\n\n\nInput: \"How to get more Google traffic using AI\"\n\u2192 Output: How-to, Audience: SEO marketers, Intent: guide readers on applying AI for SEO growth",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Agent:EagerNailsRemain": {
"downstream": [
"Agent:LovelyHeadsOwn"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Body_Agent**, responsible for generating the full content of each section of an SEO-optimized blog based on the provided outline and keyword strategy.\n\n# Tool Access:\n\nYou can use the `Tavily Search` tool to retrieve relevant content, statistics, or examples to support each section you're writing.\n\nUse it **only** when the provided outline lacks enough information, or if the section requires factual grounding.\n\nAlways cite the original link or indicate source where possible.\n\n\n# Goals\n\n1. Write each section (based on H2/H3 structure) as a complete and natural blog paragraph.\n\n2. Integrate the suggested long-tail keywords naturally into each section.\n\n3. When appropriate, use the `Tavily Search` tool to enrich your writing with relevant facts, examples, or quotes.\n\n4. Ensure each section is clear, engaging, and informative, suitable for both human readers and search engines.\n\n\n# Style Guidelines\n\n- Write in a tone appropriate to the audience. Be explanatory, not promotional, unless it's a marketing blog.\n\n- Avoid generic filler content. Prioritize clarity, structure, and value.\n\n- Ensure SEO keywords are embedded seamlessly, not forcefully.\n\n\n\n- Maintain writing rhythm. Vary sentence lengths. Use transitions between ideas.\n\n\n# Input\n\n\nYou will receive:\n\n- Blog title\n\n- Structured outline (including section titles, keywords, and descriptions)\n\n- Target audience\n\n- Blog type and user intent\n\nYou must **follow the outline strictly**. Write content **section-by-section**, based on the structure.\n\n\n# Output Format\n\n```markdown\n\n## H2: [Section Title]\n\n[Your generated content for this section \u2014 500-600 words, using keywords naturally.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:BetterSitesSend"
]
},
"Agent:LovelyHeadsOwn": {
"downstream": [
"Message:LegalBeansBet"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Editor_Agent**, responsible for finalizing the blog post for both human readability and SEO effectiveness.\n\n# Goals\n\n1. Polish the entire blog content for clarity, coherence, and style.\n\n2. Improve transitions between sections, ensure logical flow.\n\n3. Verify that keywords are used appropriately and effectively.\n\n4. Conduct a lightweight SEO audit \u2014 checking keyword density, structure (H1/H2/H3), and overall searchability.\n\n\n\n# Style Guidelines\n\n- Be precise. Avoid bloated or vague language.\n\n- Maintain an informative and engaging tone, suitable to the target audience.\n\n- Do not remove keywords unless absolutely necessary for clarity.\n\n- Ensure paragraph flow and section continuity.\n\n\n# Input\n\nYou will receive:\n\n- Full blog content, written section-by-section\n\n- Original outline with suggested keywords\n\n- Target audience and writing type\n\n# Output Format\n\n```markdown\n\n[The revised, fully polished blog post content goes here.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:EagerNailsRemain"
]
},
"Message:LegalBeansBet": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:LovelyHeadsOwn@content}"
]
}
},
"upstream": [
"Agent:LovelyHeadsOwn"
]
},
"begin": {
"downstream": [
"Agent:ClearRabbitsScream"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SEO blog assistant.\n\nTo get started, please tell me:\n1. What topic you want the blog to cover\n2. Who is the target audience\n3. What you hope to achieve with this blog (e.g., SEO traffic, teaching beginners, promoting a product)\n"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:ClearRabbitsScreamend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:ClearRabbitsScream",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:ClearRabbitsScreamstart-Agent:BetterSitesSendend",
"source": "Agent:ClearRabbitsScream",
"sourceHandle": "start",
"target": "Agent:BetterSitesSend",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:BetterSitesSendtool-Tool:SharpPensBurnend",
"source": "Agent:BetterSitesSend",
"sourceHandle": "tool",
"target": "Tool:SharpPensBurn",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:BetterSitesSendstart-Agent:EagerNailsRemainend",
"source": "Agent:BetterSitesSend",
"sourceHandle": "start",
"target": "Agent:EagerNailsRemain",
"targetHandle": "end"
},
{
"id": "xy-edge__Agent:EagerNailsRemaintool-Tool:WickedDeerHealend",
"source": "Agent:EagerNailsRemain",
"sourceHandle": "tool",
"target": "Tool:WickedDeerHeal",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:EagerNailsRemainstart-Agent:LovelyHeadsOwnend",
"source": "Agent:EagerNailsRemain",
"sourceHandle": "start",
"target": "Agent:LovelyHeadsOwn",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:LovelyHeadsOwnstart-Message:LegalBeansBetend",
"source": "Agent:LovelyHeadsOwn",
"sourceHandle": "start",
"target": "Message:LegalBeansBet",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SEO blog assistant.\n\nTo get started, please tell me:\n1. What topic you want the blog to cover\n2. Who is the target audience\n3. What you hope to achieve with this blog (e.g., SEO traffic, teaching beginners, promoting a product)\n"
},
"label": "Begin",
"name": "begin"
},
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 50,
"y": 200
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 1,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The user query is {sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Parse_And_Keyword_Agent**, responsible for interpreting a user's blog writing request and generating a structured writing intent summary and keyword strategy for SEO-optimized content generation.\n\n# Goals\n\n1. Extract and infer the user's true writing intent, even if the input is informal or vague.\n\n2. Identify the writing type, target audience, and implied goal.\n\n3. Suggest 3\u20135 long-tail keywords based on the input and context.\n\n4. Output all data in a Markdown format for downstream agents.\n\n# Operating Guidelines\n\n\n- If the user's input lacks clarity, make reasonable and **conservative** assumptions based on SEO best practices.\n\n- Always choose one clear \"Writing Type\" from the list below.\n\n- Your job is not to write the blog \u2014 only to structure the brief.\n\n# Output Format\n\n```markdown\n## Writing Type\n\n[Choose one: Tutorial / Informative Guide / Marketing Content / Case Study / Opinion Piece / How-to / Comparison Article]\n\n## Target Audience\n\n[Try to be specific based on clues in the input: e.g., marketing managers, junior developers, SEO beginners]\n\n## User Intent Summary\n\n[A 1\u20132 sentence summary of what the user wants to achieve with the blog post]\n\n## Suggested Long-tail Keywords\n\n- keyword 1\n\n- keyword 2\n\n- keyword 3\n\n- keyword 4 (optional)\n\n- keyword 5 (optional)\n\n\n\n\n## Input Examples (and how to handle them)\n\nInput: \"I want to write about RAGFlow.\"\n\u2192 Output: Informative Guide, Audience: AI developers, Intent: explain what RAGFlow is and its use cases\n\nInput: \"Need a blog to promote our prompt design tool.\"\n\u2192 Output: Marketing Content, Audience: product managers or tool adopters, Intent: raise awareness and interest in the product\n\n\n\nInput: \"How to get more Google traffic using AI\"\n\u2192 Output: How-to, Audience: SEO marketers, Intent: guide readers on applying AI for SEO growth",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Parse And Keyword Agent"
},
"dragging": false,
"id": "Agent:ClearRabbitsScream",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 344.7766966202233,
"y": 234.82202253184496
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.3,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Balance",
"presencePenaltyEnabled": false,
"presence_penalty": 0.2,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Outline_Agent**, responsible for generating a clear and SEO-optimized blog outline based on the user's parsed writing intent and keyword strategy.\n\n# Tool Access:\n\n- You have access to a search tool called `Tavily Search`.\n\n- If you are unsure how to structure a section, you may call this tool to search for related blog outlines or content from Google.\n\n- Do not overuse it. Your job is to extract **structure**, not to write paragraphs.\n\n\n# Goals\n\n1. Create a well-structured outline with appropriate H2 and H3 headings.\n\n2. Ensure logical flow from introduction to conclusion.\n\n3. Assign 1\u20132 suggested long-tail keywords to each major section for SEO alignment.\n\n4. Make the structure suitable for downstream paragraph writing.\n\n\n\n\n#Note\n\n- Use concise, scannable section titles.\n\n- Do not write full paragraphs.\n\n- Prioritize clarity, logical progression, and SEO alignment.\n\n\n\n- If the blog type is \u201cTutorial\u201d or \u201cHow-to\u201d, include step-based sections.\n\n\n# Input\n\nYou will receive:\n\n- Writing Type (e.g., Tutorial, Informative Guide)\n\n- Target Audience\n\n- User Intent Summary\n\n- 3\u20135 long-tail keywords\n\n\nUse this information to design a structure that both informs readers and maximizes search engine visibility.\n\n# Output Format\n\n```markdown\n\n## Blog Title (suggested)\n\n[Give a short, SEO-friendly title suggestion]\n\n## Outline\n\n### Introduction\n\n- Purpose of the article\n\n- Brief context\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 1]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 2]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 3]\n\n- [Optional H3 Subsection Title A]\n\n - [Explanation of sub-point]\n\n- [Optional H3 Subsection Title B]\n\n - [Explanation of sub-point]\n\n- **Suggested keywords**: [keyword1]\n\n### Conclusion\n\n- Recap key takeaways\n\n- Optional CTA (Call to Action)\n\n- **Suggested keywords**: [keyword3]\n\n",
"temperature": 0.5,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.85,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Outline Agent"
},
"dragging": false,
"id": "Agent:BetterSitesSend",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 613.4368763415628,
"y": 164.3074269048589
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_0"
},
"dragging": false,
"id": "Tool:SharpPensBurn",
"measured": {
"height": 44,
"width": 200
},
"position": {
"x": 580.1877078861457,
"y": 287.7669662022325
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Body_Agent**, responsible for generating the full content of each section of an SEO-optimized blog based on the provided outline and keyword strategy.\n\n# Tool Access:\n\nYou can use the `Tavily Search` tool to retrieve relevant content, statistics, or examples to support each section you're writing.\n\nUse it **only** when the provided outline lacks enough information, or if the section requires factual grounding.\n\nAlways cite the original link or indicate source where possible.\n\n\n# Goals\n\n1. Write each section (based on H2/H3 structure) as a complete and natural blog paragraph.\n\n2. Integrate the suggested long-tail keywords naturally into each section.\n\n3. When appropriate, use the `Tavily Search` tool to enrich your writing with relevant facts, examples, or quotes.\n\n4. Ensure each section is clear, engaging, and informative, suitable for both human readers and search engines.\n\n\n# Style Guidelines\n\n- Write in a tone appropriate to the audience. Be explanatory, not promotional, unless it's a marketing blog.\n\n- Avoid generic filler content. Prioritize clarity, structure, and value.\n\n- Ensure SEO keywords are embedded seamlessly, not forcefully.\n\n\n\n- Maintain writing rhythm. Vary sentence lengths. Use transitions between ideas.\n\n\n# Input\n\n\nYou will receive:\n\n- Blog title\n\n- Structured outline (including section titles, keywords, and descriptions)\n\n- Target audience\n\n- Blog type and user intent\n\nYou must **follow the outline strictly**. Write content **section-by-section**, based on the structure.\n\n\n# Output Format\n\n```markdown\n\n## H2: [Section Title]\n\n[Your generated content for this section \u2014 500-600 words, using keywords naturally.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Body Agent"
},
"dragging": false,
"id": "Agent:EagerNailsRemain",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 889.0614605692713,
"y": 247.00973041799065
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_1"
},
"dragging": false,
"id": "Tool:WickedDeerHeal",
"measured": {
"height": 44,
"width": 200
},
"position": {
"x": 853.2006404239659,
"y": 364.37541577229143
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Ouline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Editor_Agent**, responsible for finalizing the blog post for both human readability and SEO effectiveness.\n\n# Goals\n\n1. Polish the entire blog content for clarity, coherence, and style.\n\n2. Improve transitions between sections, ensure logical flow.\n\n3. Verify that keywords are used appropriately and effectively.\n\n4. Conduct a lightweight SEO audit \u2014 checking keyword density, structure (H1/H2/H3), and overall searchability.\n\n\n\n# Style Guidelines\n\n- Be precise. Avoid bloated or vague language.\n\n- Maintain an informative and engaging tone, suitable to the target audience.\n\n- Do not remove keywords unless absolutely necessary for clarity.\n\n- Ensure paragraph flow and section continuity.\n\n\n# Input\n\nYou will receive:\n\n- Full blog content, written section-by-section\n\n- Original outline with suggested keywords\n\n- Target audience and writing type\n\n# Output Format\n\n```markdown\n\n[The revised, fully polished blog post content goes here.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Editor Agent"
},
"dragging": false,
"id": "Agent:LovelyHeadsOwn",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 1160.3332919804993,
"y": 149.50806732882472
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"content": [
"{Agent:LovelyHeadsOwn@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:LegalBeansBet",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 1370.6665839609984,
"y": 267.0323933738015
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"text": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You don\u2019t need any writing experience. Just provide a topic or short request \u2014 the system will handle the rest.\n\nThe process includes the following key stages:\n\n1. **Understanding your topic and goals**\n2. **Designing the blog structure**\n3. **Writing high-quality content**\n\n\n"
},
"label": "Note",
"name": "Workflow Overall Description"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 205,
"id": "Note:SlimyGhostsWear",
"measured": {
"height": 205,
"width": 415
},
"position": {
"x": -284.3143151688742,
"y": 150.47632147913419
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 415
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent reads the user\u2019s input and figures out what kind of blog needs to be written.\n\n**What it does**:\n- Understands the main topic you want to write about \n- Identifies who the blog is for (e.g., beginners, marketers, developers) \n- Determines the writing purpose (e.g., SEO traffic, product promotion, education) \n- Suggests 3\u20135 long-tail SEO keywords related to the topic"
},
"label": "Note",
"name": "Parse And Keyword Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 152,
"id": "Note:EmptyChairsShake",
"measured": {
"height": 152,
"width": 340
},
"position": {
"x": 295.04147626768133,
"y": 372.2755718118446
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 340
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent builds the blog structure \u2014 just like writing a table of contents before you start writing the full article.\n\n**What it does**:\n- Suggests a clear blog title that includes important keywords \n- Breaks the article into sections using H2 and H3 headings (like a professional blog layout) \n- Assigns 1\u20132 recommended keywords to each section to help with SEO \n- Follows the writing goal and target audience set in the previous step"
},
"label": "Note",
"name": "Outline Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 146,
"id": "Note:TallMelonsNotice",
"measured": {
"height": 146,
"width": 343
},
"position": {
"x": 598.5644991893463,
"y": 5.801054564756448
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 343
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent is responsible for writing the actual content of the blog \u2014 paragraph by paragraph \u2014 based on the outline created earlier.\n\n**What it does**:\n- Looks at each H2/H3 section in the outline \n- Writes 150\u2013220 words of clear, helpful, and well-structured content per section \n- Includes the suggested SEO keywords naturally (not keyword stuffing) \n- Uses real examples or facts if needed (by calling a web search tool like Tavily)"
},
"label": "Note",
"name": "Body Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 137,
"id": "Note:RipeCougarsBuild",
"measured": {
"height": 137,
"width": 319
},
"position": {
"x": 860.4854129814981,
"y": 427.2196835690842
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 319
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent reviews the entire blog draft to make sure it is smooth, professional, and SEO-friendly. It acts like a human editor before publishing.\n\n**What it does**:\n- Polishes the writing: improves sentence clarity, fixes awkward phrasing \n- Makes sure the content flows well from one section to the next \n- Double-checks keyword usage: are they present, natural, and not overused? \n- Verifies the blog structure (H1, H2, H3 headings) is correct \n- Adds two key SEO elements:\n - **Meta Title** (shows up in search results)\n - **Meta Description** (summary for Google and social sharing)"
},
"label": "Note",
"name": "Editor Agent"
},
"dragHandle": ".note-drag-handle",
"height": 146,
"id": "Note:OpenTurkeysSell",
"measured": {
"height": 146,
"width": 320
},
"position": {
"x": 1129,
"y": -30
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 320
}
]
},
"history": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -49,11 +49,12 @@ class LLMToolPluginCallSession(ToolCallSession):
def tool_call(self, name: str, arguments: dict[str, Any]) -> Any: def tool_call(self, name: str, arguments: dict[str, Any]) -> Any:
assert name in self.tools_map, f"LLM tool {name} does not exist" assert name in self.tools_map, f"LLM tool {name} does not exist"
self.callback(name, arguments, " running ...")
if isinstance(self.tools_map[name], MCPToolCallSession): if isinstance(self.tools_map[name], MCPToolCallSession):
resp = self.tools_map[name].tool_call(name, arguments, 60) resp = self.tools_map[name].tool_call(name, arguments, 60)
else: else:
resp = self.tools_map[name].invoke(**arguments) resp = self.tools_map[name].invoke(**arguments)
self.callback(name, arguments, resp)
return resp return resp
def get_tool_obj(self, name): def get_tool_obj(self, name):

View File

@ -848,6 +848,10 @@ def begin_inputs(agent_id):
return get_error_data_result(f"Can't find agent by ID: {agent_id}") return get_error_data_result(f"Can't find agent by ID: {agent_id}")
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id) canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
return get_result(data=canvas.get_component_input_form("begin")) return get_result(data={
"title": cvs.title,
"avatar": cvs.avatar,
"inputs": canvas.get_component_input_form("begin")
})

View File

@ -134,7 +134,9 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
assert e, "Session not found!" assert e, "Session not found!"
if not conv.message: if not conv.message:
conv.message = [] conv.message = []
canvas = Canvas(json.dumps(conv.dsl), tenant_id, session_id) if not isinstance(conv.dsl, str):
conv.dsl = json.dumps(conv.dsl, ensure_ascii=False)
canvas = Canvas(conv.dsl, tenant_id, agent_id)
else: else:
e, cvs = UserCanvasService.get_by_id(agent_id) e, cvs = UserCanvasService.get_by_id(agent_id)
assert e, "Agent not found." assert e, "Agent not found."
@ -142,7 +144,8 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
if not isinstance(cvs.dsl, str): if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False) cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
session_id=get_uuid() session_id=get_uuid()
canvas = Canvas(cvs.dsl, tenant_id, session_id) canvas = Canvas(cvs.dsl, tenant_id, agent_id)
canvas.reset()
conv = { conv = {
"id": session_id, "id": session_id,
"dialog_id": cvs.id, "dialog_id": cvs.id,

View File

@ -29,7 +29,6 @@ def get_encoding(file):
class RAGFlowHtmlParser: class RAGFlowHtmlParser:
def __call__(self, fnm, binary=None): def __call__(self, fnm, binary=None):
txt = ""
if binary: if binary:
encoding = find_codec(binary) encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore") txt = binary.decode(encoding, errors="ignore")

View File

@ -10535,5 +10535,12 @@
"q2": "二季度", "q2": "二季度",
"q3": "三季度", "q3": "三季度",
"q4": "四季度", "q4": "四季度",
"周一": ["礼拜一", "星期一"],
"周二": ["礼拜二", "星期二"],
"周三": ["礼拜三", "星期三"],
"周四": ["礼拜四", "星期四"],
"周五": ["礼拜五", "星期五"],
"周六": ["礼拜六", "星期六"],
"周日": ["礼拜日", "星期日", "星期天", "礼拜天"],
"上班": "办公" "上班": "办公"
} }