add dialog api (#33)

This commit is contained in:
KevinHuSh
2024-01-17 20:20:42 +08:00
committed by GitHub
parent 6be3dd56fa
commit 9bf75d4511
50 changed files with 511 additions and 273 deletions

View File

@ -1,5 +1,5 @@
#
# Copyright 2019 The RAG Flow Authors. All Rights Reserved.
# Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -13,31 +13,26 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
import hashlib
import pathlib
import re
from elasticsearch_dsl import Q
import numpy as np
from flask import request
from flask_login import login_required, current_user
from rag.nlp import search, huqie
from rag.utils import ELASTICSEARCH, rmSpace
from web_server.db import LLMType
from web_server.db.services import duplicate_name
from web_server.db.services.kb_service import KnowledgebaseService
from web_server.db.services.llm_service import TenantLLMService
from web_server.db.services.user_service import UserTenantService
from web_server.utils.api_utils import server_error_response, get_data_error_result, validate_request
from web_server.utils import get_uuid
from web_server.db.services.document_service import DocumentService
from web_server.settings import RetCode
from web_server.utils.api_utils import get_json_result
from rag.utils.minio_conn import MINIO
from web_server.utils.file_utils import filename_type
from api.db import LLMType
from api.db.services import duplicate_name
from api.db.services.kb_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import UserTenantService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.db.services.document_service import DocumentService
from api.settings import RetCode
from api.utils.api_utils import get_json_result
retrival = search.Dealer(ELASTICSEARCH, None)
retrival = search.Dealer(ELASTICSEARCH)
@manager.route('/list', methods=['POST'])
@login_required
@ -45,16 +40,29 @@ retrival = search.Dealer(ELASTICSEARCH, None)
def list():
req = request.json
doc_id = req["doc_id"]
page = req.get("page", 1)
size = req.get("size", 30)
page = int(req.get("page", 1))
size = int(req.get("size", 30))
question = req.get("keywords", "")
try:
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
res = retrival.search({
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
query = {
"doc_ids": [doc_id], "page": page, "size": size, "question": question
}, search.index_name(tenants[0].tenant_id))
}
if "available_int" in req: query["available_int"] = int(req["available_int"])
sres = retrival.search(query, search.index_name(tenant_id))
res = {"total": sres.total, "chunks": []}
for id in sres.ids:
d = {
"chunk_id": id,
"content_ltks": rmSpace(sres.highlight[id]) if question else sres.field[id]["content_ltks"],
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"available_int": sres.field[id].get("available_int", 1),
}
res["chunks"].append(d)
return get_json_result(data=res)
except Exception as e:
if str(e).find("not_found") > 0:
@ -102,6 +110,7 @@ def set():
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
d["important_kwd"] = req["important_kwd"]
d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
if "available_int" in req: d["available_int"] = req["available_int"]
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
@ -116,10 +125,27 @@ def set():
return server_error_response(e)
@manager.route('/switch', methods=['POST'])
@login_required
@validate_request("chunk_ids", "available_int", "doc_id")
def switch():
req = request.json
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
search.index_name(tenant_id)):
return get_data_error_result(retmsg="Index updating failure")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/create', methods=['POST'])
@login_required
@validate_request("doc_id", "content_ltks", "important_kwd")
def set():
def create():
req = request.json
md5 = hashlib.md5()
md5.update((req["content_ltks"] + req["doc_id"]).encode("utf-8"))
@ -148,3 +174,64 @@ def set():
return get_json_result(data={"chunk_id": chunck_id})
except Exception as e:
return server_error_response(e)
@manager.route('/retrieval_test', methods=['POST'])
@login_required
@validate_request("kb_id", "question")
def retrieval_test():
req = request.json
page = int(req.get("page", 1))
size = int(req.get("size", 30))
question = req["question"]
kb_id = req["kb_id"]
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.4))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top", 1024))
try:
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
return get_data_error_result(retmsg="Knowledgebase not found!")
embd_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.EMBEDDING.value)
sres = retrival.search({"kb_ids": [kb_id], "doc_ids": doc_ids, "size": top,
"question": question, "vector": True,
"similarity": similarity_threshold},
search.index_name(kb.tenant_id),
embd_mdl)
sim, tsim, vsim = retrival.rerank(sres, question, 1-vector_similarity_weight, vector_similarity_weight)
idx = np.argsort(sim*-1)
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
start_idx = (page-1)*size
for i in idx:
ranks["total"] += 1
if sim[i] < similarity_threshold: break
start_idx -= 1
if start_idx >= 0:continue
if len(ranks["chunks"]) == size:continue
id = sres.ids[i]
dnm = sres.field[id]["docnm_kwd"]
d = {
"chunk_id": id,
"content_ltks": sres.field[id]["content_ltks"],
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": dnm,
"kb_id": sres.field[id]["kb_id"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i]
}
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:ranks["doc_aggs"][dnm] = 0
ranks["doc_aggs"][dnm] += 1
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, retmsg=f'Index not found!',
retcode=RetCode.DATA_ERROR)
return server_error_response(e)