Fix: debug PDF positions.. (#10365)

### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
Kevin Hu
2025-09-30 09:24:44 +08:00
committed by GitHub
parent c49e81882c
commit 9989e06abb
9 changed files with 52 additions and 51 deletions

View File

@ -503,9 +503,9 @@ async def run_dataflow(task: dict):
embedding_token_consumption = chunks.get("embedding_token_consumption", 0)
if chunks.get("chunks"):
chunks = chunks["chunks"]
chunks = copy.deepcopy(chunks["chunks"])
elif chunks.get("json"):
chunks = chunks["json"]
chunks = copy.deepcopy(chunks["json"])
elif chunks.get("markdown"):
chunks = [{"text": [chunks["markdown"]]}]
elif chunks.get("text"):
@ -515,34 +515,40 @@ async def run_dataflow(task: dict):
keys = [k for o in chunks for k in list(o.keys())]
if not any([re.match(r"q_[0-9]+_vec", k) for k in keys]):
set_progress(task_id, prog=0.82, msg="\n-------------------------------------\nStart to embedding...")
e, kb = KnowledgebaseService.get_by_id(task["kb_id"])
embedding_id = kb.embd_id
embedding_model = LLMBundle(task["tenant_id"], LLMType.EMBEDDING, llm_name=embedding_id)
@timeout(60)
def batch_encode(txts):
nonlocal embedding_model
return embedding_model.encode([truncate(c, embedding_model.max_length - 10) for c in txts])
vects = np.array([])
texts = [o.get("questions", o.get("summary", o["text"])) for o in chunks]
delta = 0.20/(len(texts)//EMBEDDING_BATCH_SIZE+1)
prog = 0.8
for i in range(0, len(texts), EMBEDDING_BATCH_SIZE):
async with embed_limiter:
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(texts[i : i + EMBEDDING_BATCH_SIZE]))
if len(vects) == 0:
vects = vts
else:
vects = np.concatenate((vects, vts), axis=0)
embedding_token_consumption += c
prog += delta
if i % (len(texts)//EMBEDDING_BATCH_SIZE/100+1) == 1:
set_progress(task_id, prog=prog, msg=f"{i+1} / {len(texts)//EMBEDDING_BATCH_SIZE}")
try:
set_progress(task_id, prog=0.82, msg="\n-------------------------------------\nStart to embedding...")
e, kb = KnowledgebaseService.get_by_id(task["kb_id"])
embedding_id = kb.embd_id
embedding_model = LLMBundle(task["tenant_id"], LLMType.EMBEDDING, llm_name=embedding_id)
@timeout(60)
def batch_encode(txts):
nonlocal embedding_model
return embedding_model.encode([truncate(c, embedding_model.max_length - 10) for c in txts])
vects = np.array([])
texts = [o.get("questions", o.get("summary", o["text"])) for o in chunks]
delta = 0.20/(len(texts)//EMBEDDING_BATCH_SIZE+1)
prog = 0.8
for i in range(0, len(texts), EMBEDDING_BATCH_SIZE):
async with embed_limiter:
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(texts[i : i + EMBEDDING_BATCH_SIZE]))
if len(vects) == 0:
vects = vts
else:
vects = np.concatenate((vects, vts), axis=0)
embedding_token_consumption += c
prog += delta
if i % (len(texts)//EMBEDDING_BATCH_SIZE/100+1) == 1:
set_progress(task_id, prog=prog, msg=f"{i+1} / {len(texts)//EMBEDDING_BATCH_SIZE}")
assert len(vects) == len(chunks)
for i, ck in enumerate(chunks):
v = vects[i].tolist()
ck["q_%d_vec" % len(v)] = v
except Exception as e:
set_progress(task_id, prog=-1, msg=f"[ERROR]: {e}")
PipelineOperationLogService.create(document_id=doc_id, pipeline_id=dataflow_id, task_type=PipelineTaskType.PARSE, dsl=str(pipeline))
return
assert len(vects) == len(chunks)
for i, ck in enumerate(chunks):
v = vects[i].tolist()
ck["q_%d_vec" % len(v)] = v
metadata = {}
def dict_update(meta):