support snapshot download from local (#153)

* support snapshot download from local

* let snapshot download from local
This commit is contained in:
KevinHuSh
2024-03-27 09:53:42 +08:00
committed by GitHub
parent da21320b88
commit 979b3a5b4b
12 changed files with 109 additions and 24 deletions

View File

@ -1,4 +1,5 @@
# -*- coding: utf-8 -*-
import os
import random
import fitz
@ -12,10 +13,12 @@ from PIL import Image, ImageDraw
import numpy as np
from PyPDF2 import PdfReader as pdf2_read
from api.utils.file_utils import get_project_base_directory
from deepdoc.vision import OCR, Recognizer, LayoutRecognizer, TableStructureRecognizer
from rag.nlp import huqie
from copy import deepcopy
from huggingface_hub import hf_hub_download
from huggingface_hub import hf_hub_download, snapshot_download
logging.getLogger("pdfminer").setLevel(logging.WARNING)
@ -32,8 +35,17 @@ class HuParser:
self.updown_cnt_mdl = xgb.Booster()
if torch.cuda.is_available():
self.updown_cnt_mdl.set_param({"device": "cuda"})
self.updown_cnt_mdl.load_model(hf_hub_download(repo_id="InfiniFlow/text_concat_xgb_v1.0",
filename="updown_concat_xgb.model"))
try:
model_dir = snapshot_download(
repo_id="InfiniFlow/text_concat_xgb_v1.0",
local_dir=os.path.join(
get_project_base_directory(),
"rag/res/deepdoc"),
local_files_only=True)
except Exception as e:
model_dir = snapshot_download(repo_id="InfiniFlow/text_concat_xgb_v1.0")
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
self.page_from = 0
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!

View File

@ -37,7 +37,16 @@ class LayoutRecognizer(Recognizer):
"Equation",
]
def __init__(self, domain):
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
try:
model_dir = snapshot_download(
repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(
get_project_base_directory(),
"rag/res/deepdoc"),
local_files_only=True)
except Exception as e:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
super().__init__(self.labels, domain, model_dir)#os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
self.garbage_layouts = ["footer", "header", "reference"]

View File

@ -14,6 +14,10 @@
import copy
import time
import os
from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from .operators import *
import numpy as np
import onnxruntime as ort
@ -21,6 +25,7 @@ import onnxruntime as ort
from .postprocess import build_post_process
from rag.settings import cron_logger
def transform(data, ops=None):
""" transform """
if ops is None:
@ -66,9 +71,15 @@ def load_model(model_dir, nm):
options.intra_op_num_threads = 2
options.inter_op_num_threads = 2
if False and ort.get_device() == "GPU":
sess = ort.InferenceSession(model_file_path, options=options, providers=['CUDAExecutionProvider'])
sess = ort.InferenceSession(
model_file_path,
options=options,
providers=['CUDAExecutionProvider'])
else:
sess = ort.InferenceSession(model_file_path, options=options, providers=['CPUExecutionProvider'])
sess = ort.InferenceSession(
model_file_path,
options=options,
providers=['CPUExecutionProvider'])
return sess, sess.get_inputs()[0]
@ -331,7 +342,8 @@ class TextRecognizer(object):
outputs = self.predictor.run(None, input_dict)
break
except Exception as e:
if i >= 3: raise e
if i >= 3:
raise e
time.sleep(5)
preds = outputs[0]
rec_result = self.postprocess_op(preds)
@ -442,7 +454,8 @@ class TextDetector(object):
outputs = self.predictor.run(None, input_dict)
break
except Exception as e:
if i >= 3: raise e
if i >= 3:
raise e
time.sleep(5)
post_result = self.postprocess_op({"maps": outputs[0]}, shape_list)
@ -466,7 +479,15 @@ class OCR(object):
"""
if not model_dir:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
try:
model_dir = snapshot_download(
repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(
get_project_base_directory(),
"rag/res/deepdoc"),
local_files_only=True)
except Exception as e:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
self.text_detector = TextDetector(model_dir)
self.text_recognizer = TextRecognizer(model_dir)
@ -548,14 +569,16 @@ class OCR(object):
cron_logger.debug("dt_boxes num : {}, elapsed : {}".format(
len(dt_boxes), elapse))
return zip(self.sorted_boxes(dt_boxes), [("",0) for _ in range(len(dt_boxes))])
return zip(self.sorted_boxes(dt_boxes), [
("", 0) for _ in range(len(dt_boxes))])
def recognize(self, ori_im, box):
img_crop = self.get_rotate_crop_image(ori_im, box)
rec_res, elapse = self.text_recognizer([img_crop])
text, score = rec_res[0]
if score < self.drop_score:return ""
if score < self.drop_score:
return ""
return text
def __call__(self, img, cls=True):
@ -600,8 +623,7 @@ class OCR(object):
end = time.time()
time_dict['all'] = end - start
#for bno in range(len(img_crop_list)):
# for bno in range(len(img_crop_list)):
# print(f"{bno}, {rec_res[bno]}")
return list(zip([a.tolist() for a in filter_boxes], filter_rec_res))

View File

@ -17,6 +17,7 @@ from copy import deepcopy
import onnxruntime as ort
from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from .operators import *
from rag.settings import cron_logger
@ -35,7 +36,15 @@ class Recognizer(object):
"""
if not model_dir:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
try:
model_dir = snapshot_download(
repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(
get_project_base_directory(),
"rag/res/deepdoc"),
local_files_only=True)
except Exception as e:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
model_file_path = os.path.join(model_dir, task_name + ".onnx")
if not os.path.exists(model_file_path):

View File

@ -34,7 +34,16 @@ class TableStructureRecognizer(Recognizer):
]
def __init__(self):
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
try:
model_dir = snapshot_download(
repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(
get_project_base_directory(),
"rag/res/deepdoc"),
local_files_only=True)
except Exception as e:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
super().__init__(self.labels, "tsr", model_dir)#os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
def __call__(self, images, thr=0.2):