mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Refa: remove temperature since some LLMs fail to support. (#8981)
### What problem does this PR solve? ### Type of change - [x] Refactoring
This commit is contained in:
@ -152,7 +152,6 @@ class EntityResolution(Extractor):
|
||||
)
|
||||
|
||||
async def _resolve_candidate(self, candidate_resolution_i: tuple[str, list[tuple[str, str]]], resolution_result: set[str], resolution_result_lock: trio.Lock):
|
||||
gen_conf = {"temperature": 0.5}
|
||||
pair_txt = [
|
||||
f'When determining whether two {candidate_resolution_i[0]}s are the same, you should only focus on critical properties and overlook noisy factors.\n']
|
||||
for index, candidate in enumerate(candidate_resolution_i[1]):
|
||||
@ -171,7 +170,7 @@ class EntityResolution(Extractor):
|
||||
async with chat_limiter:
|
||||
try:
|
||||
with trio.move_on_after(120) as cancel_scope:
|
||||
response = await trio.to_thread.run_sync(self._chat, text, [{"role": "user", "content": "Output:"}], gen_conf)
|
||||
response = await trio.to_thread.run_sync(self._chat, text, [{"role": "user", "content": "Output:"}], {})
|
||||
if cancel_scope.cancelled_caught:
|
||||
logging.warning("_resolve_candidate._chat timeout, skipping...")
|
||||
return
|
||||
|
||||
@ -90,11 +90,10 @@ class CommunityReportsExtractor(Extractor):
|
||||
"relation_df": rela_df.to_csv(index_label="id")
|
||||
}
|
||||
text = perform_variable_replacements(self._extraction_prompt, variables=prompt_variables)
|
||||
gen_conf = {"temperature": 0.3}
|
||||
async with chat_limiter:
|
||||
try:
|
||||
with trio.move_on_after(80) as cancel_scope:
|
||||
response = await trio.to_thread.run_sync( self._chat, text, [{"role": "user", "content": "Output:"}], gen_conf)
|
||||
response = await trio.to_thread.run_sync( self._chat, text, [{"role": "user", "content": "Output:"}], {})
|
||||
if cancel_scope.cancelled_caught:
|
||||
logging.warning("extract_community_report._chat timeout, skipping...")
|
||||
return
|
||||
|
||||
@ -105,10 +105,9 @@ class GraphExtractor(Extractor):
|
||||
**self._prompt_variables,
|
||||
self._input_text_key: content,
|
||||
}
|
||||
gen_conf = {"temperature": 0.3}
|
||||
hint_prompt = perform_variable_replacements(self._extraction_prompt, variables=variables)
|
||||
async with chat_limiter:
|
||||
response = await trio.to_thread.run_sync(lambda: self._chat(hint_prompt, [{"role": "user", "content": "Output:"}], gen_conf))
|
||||
response = await trio.to_thread.run_sync(lambda: self._chat(hint_prompt, [{"role": "user", "content": "Output:"}], {}))
|
||||
token_count += num_tokens_from_string(hint_prompt + response)
|
||||
|
||||
results = response or ""
|
||||
@ -118,7 +117,7 @@ class GraphExtractor(Extractor):
|
||||
for i in range(self._max_gleanings):
|
||||
history.append({"role": "user", "content": CONTINUE_PROMPT})
|
||||
async with chat_limiter:
|
||||
response = await trio.to_thread.run_sync(lambda: self._chat("", history, gen_conf))
|
||||
response = await trio.to_thread.run_sync(lambda: self._chat("", history, {}))
|
||||
token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + response)
|
||||
results += response or ""
|
||||
|
||||
|
||||
@ -171,9 +171,8 @@ class MindMapExtractor(Extractor):
|
||||
self._input_text_key: text,
|
||||
}
|
||||
text = perform_variable_replacements(self._mind_map_prompt, variables=variables)
|
||||
gen_conf = {"temperature": 0.5}
|
||||
async with chat_limiter:
|
||||
response = await trio.to_thread.run_sync(lambda: self._chat(text, [{"role": "user", "content": "Output:"}], gen_conf))
|
||||
response = await trio.to_thread.run_sync(lambda: self._chat(text, [{"role": "user", "content": "Output:"}], {}))
|
||||
response = re.sub(r"```[^\n]*", "", response)
|
||||
logging.debug(response)
|
||||
logging.debug(self._todict(markdown_to_json.dictify(response)))
|
||||
|
||||
@ -45,7 +45,7 @@ class KGSearch(Dealer):
|
||||
ty2ents = trio.run(lambda: get_entity_type2sampels(idxnms, kb_ids))
|
||||
hint_prompt = PROMPTS["minirag_query2kwd"].format(query=question,
|
||||
TYPE_POOL=json.dumps(ty2ents, ensure_ascii=False, indent=2))
|
||||
result = self._chat(llm, hint_prompt, [{"role": "user", "content": "Output:"}], {"temperature": .5})
|
||||
result = self._chat(llm, hint_prompt, [{"role": "user", "content": "Output:"}], {})
|
||||
try:
|
||||
keywords_data = json_repair.loads(result)
|
||||
type_keywords = keywords_data.get("answer_type_keywords", [])
|
||||
|
||||
Reference in New Issue
Block a user