Support Xinference (#320)

### What problem does this PR solve?

Issue link:#299

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
KevinHuSh
2024-04-11 18:22:25 +08:00
committed by GitHub
parent cb2cbf500c
commit 91068edf16
14 changed files with 81 additions and 7 deletions

View File

@ -21,6 +21,7 @@ from .cv_model import *
EmbeddingModel = {
"Ollama": OllamaEmbed,
"OpenAI": OpenAIEmbed,
"Xinference": XinferenceEmbed,
"Tongyi-Qianwen": HuEmbedding, #QWenEmbed,
"ZHIPU-AI": ZhipuEmbed,
"Moonshot": HuEmbedding
@ -30,6 +31,7 @@ EmbeddingModel = {
CvModel = {
"OpenAI": GptV4,
"Ollama": OllamaCV,
"Xinference": XinferenceCV,
"Tongyi-Qianwen": QWenCV,
"ZHIPU-AI": Zhipu4V,
"Moonshot": LocalCV
@ -41,6 +43,7 @@ ChatModel = {
"ZHIPU-AI": ZhipuChat,
"Tongyi-Qianwen": QWenChat,
"Ollama": OllamaChat,
"Xinference": XinferenceChat,
"Moonshot": MoonshotChat
}

View File

@ -158,6 +158,28 @@ class OllamaChat(Base):
return "**ERROR**: " + str(e), 0
class XinferenceChat(Base):
def __init__(self, key=None, model_name="", base_url=""):
self.client = OpenAI(api_key="xxx", base_url=base_url)
self.model_name = model_name
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
**gen_conf)
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
return ans, response.usage.completion_tokens
except openai.APIError as e:
return "**ERROR**: " + str(e), 0
class LocalLLM(Base):
class RPCProxy:
def __init__(self, host, port):

View File

@ -161,6 +161,22 @@ class OllamaCV(Base):
except Exception as e:
return "**ERROR**: " + str(e), 0
class XinferenceCV(Base):
def __init__(self, key, model_name="", lang="Chinese", base_url=""):
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
self.lang = lang
def describe(self, image, max_tokens=300):
b64 = self.image2base64(image)
res = self.client.chat.completions.create(
model=self.model_name,
messages=self.prompt(b64),
max_tokens=max_tokens,
)
return res.choices[0].message.content.strip(), res.usage.total_tokens
class LocalCV(Base):
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):

View File

@ -170,3 +170,20 @@ class OllamaEmbed(Base):
res = self.client.embeddings(prompt=text,
model=self.model_name)
return np.array(res["embedding"]), 128
class XinferenceEmbed(Base):
def __init__(self, key, model_name="", base_url=""):
self.client = OpenAI(api_key="xxx", base_url=base_url)
self.model_name = model_name
def encode(self, texts: list, batch_size=32):
res = self.client.embeddings.create(input=texts,
model=self.model_name)
return np.array([d.embedding for d in res.data]
), res.usage.total_tokens
def encode_queries(self, text):
res = self.client.embeddings.create(input=[text],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens