Feat: add fault-tolerant mechanism to RAPTOR (#11206)

### What problem does this PR solve?

Add fault-tolerant mechanism to RAPTOR.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Yongteng Lei
2025-11-13 18:48:07 +08:00
committed by GitHub
parent 70a0f081f6
commit 908450509f
4 changed files with 86 additions and 149 deletions

View File

@ -15,27 +15,35 @@
#
import logging
import re
import umap
import numpy as np
from sklearn.mixture import GaussianMixture
import trio
import umap
from sklearn.mixture import GaussianMixture
from api.db.services.task_service import has_canceled
from common.connection_utils import timeout
from common.exceptions import TaskCanceledException
from common.token_utils import truncate
from graphrag.utils import (
get_llm_cache,
chat_limiter,
get_embed_cache,
get_llm_cache,
set_embed_cache,
set_llm_cache,
chat_limiter,
)
from common.token_utils import truncate
class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
def __init__(
self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1
self,
max_cluster,
llm_model,
embd_model,
prompt,
max_token=512,
threshold=0.1,
max_errors=3,
):
self._max_cluster = max_cluster
self._llm_model = llm_model
@ -43,31 +51,35 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
self._threshold = threshold
self._prompt = prompt
self._max_token = max_token
self._max_errors = max(1, max_errors)
self._error_count = 0
@timeout(60*20)
@timeout(60 * 20)
async def _chat(self, system, history, gen_conf):
response = await trio.to_thread.run_sync(
lambda: get_llm_cache(self._llm_model.llm_name, system, history, gen_conf)
)
cached = await trio.to_thread.run_sync(lambda: get_llm_cache(self._llm_model.llm_name, system, history, gen_conf))
if cached:
return cached
if response:
return response
response = await trio.to_thread.run_sync(
lambda: self._llm_model.chat(system, history, gen_conf)
)
response = re.sub(r"^.*</think>", "", response, flags=re.DOTALL)
if response.find("**ERROR**") >= 0:
raise Exception(response)
await trio.to_thread.run_sync(
lambda: set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf)
)
return response
last_exc = None
for attempt in range(3):
try:
response = await trio.to_thread.run_sync(lambda: self._llm_model.chat(system, history, gen_conf))
response = re.sub(r"^.*</think>", "", response, flags=re.DOTALL)
if response.find("**ERROR**") >= 0:
raise Exception(response)
await trio.to_thread.run_sync(lambda: set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf))
return response
except Exception as exc:
last_exc = exc
logging.warning("RAPTOR LLM call failed on attempt %d/3: %s", attempt + 1, exc)
if attempt < 2:
await trio.sleep(1 + attempt)
raise last_exc if last_exc else Exception("LLM chat failed without exception")
@timeout(20)
async def _embedding_encode(self, txt):
response = await trio.to_thread.run_sync(
lambda: get_embed_cache(self._embd_model.llm_name, txt)
)
response = await trio.to_thread.run_sync(lambda: get_embed_cache(self._embd_model.llm_name, txt))
if response is not None:
return response
embds, _ = await trio.to_thread.run_sync(lambda: self._embd_model.encode([txt]))
@ -82,7 +94,6 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
n_clusters = np.arange(1, max_clusters)
bics = []
for n in n_clusters:
if task_id:
if has_canceled(task_id):
logging.info(f"Task {task_id} cancelled during get optimal clusters.")
@ -101,7 +112,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
layers = [(0, len(chunks))]
start, end = 0, len(chunks)
@timeout(60*20)
@timeout(60 * 20)
async def summarize(ck_idx: list[int]):
nonlocal chunks
@ -111,47 +122,50 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
raise TaskCanceledException(f"Task {task_id} was cancelled")
texts = [chunks[i][0] for i in ck_idx]
len_per_chunk = int(
(self._llm_model.max_length - self._max_token) / len(texts)
)
cluster_content = "\n".join(
[truncate(t, max(1, len_per_chunk)) for t in texts]
)
async with chat_limiter:
len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts))
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
try:
async with chat_limiter:
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR LLM call.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR LLM call.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
cnt = await self._chat(
"You're a helpful assistant.",
[
{
"role": "user",
"content": self._prompt.format(cluster_content=cluster_content),
}
],
{"max_tokens": max(self._max_token, 512)}, # fix issue: #10235
)
cnt = re.sub(
"(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)",
"",
cnt,
)
logging.debug(f"SUM: {cnt}")
cnt = await self._chat(
"You're a helpful assistant.",
[
{
"role": "user",
"content": self._prompt.format(
cluster_content=cluster_content
),
}
],
{"max_tokens": max(self._max_token, 512)}, # fix issue: #10235
)
cnt = re.sub(
"(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)",
"",
cnt,
)
logging.debug(f"SUM: {cnt}")
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR embedding.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
if task_id and has_canceled(task_id):
logging.info(f"Task {task_id} cancelled before RAPTOR embedding.")
raise TaskCanceledException(f"Task {task_id} was cancelled")
embds = await self._embedding_encode(cnt)
chunks.append((cnt, embds))
embds = await self._embedding_encode(cnt)
chunks.append((cnt, embds))
except TaskCanceledException:
raise
except Exception as exc:
self._error_count += 1
warn_msg = f"[RAPTOR] Skip cluster ({len(ck_idx)} chunks) due to error: {exc}"
logging.warning(warn_msg)
if callback:
callback(msg=warn_msg)
if self._error_count >= self._max_errors:
raise RuntimeError(f"RAPTOR aborted after {self._error_count} errors. Last error: {exc}") from exc
labels = []
while end - start > 1:
if task_id:
if has_canceled(task_id):
logging.info(f"Task {task_id} cancelled during RAPTOR layer processing.")
@ -161,11 +175,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
if len(embeddings) == 2:
await summarize([start, start + 1])
if callback:
callback(
msg="Cluster one layer: {} -> {}".format(
end - start, len(chunks) - end
)
)
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
labels.extend([0, 0])
layers.append((end, len(chunks)))
start = end
@ -199,17 +209,11 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
nursery.start_soon(summarize, ck_idx)
assert len(chunks) - end == n_clusters, "{} vs. {}".format(
len(chunks) - end, n_clusters
)
assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters)
labels.extend(lbls)
layers.append((end, len(chunks)))
if callback:
callback(
msg="Cluster one layer: {} -> {}".format(
end - start, len(chunks) - end
)
)
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
start = end
end = len(chunks)