mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Fix: exesql issue. (#9995)
### What problem does this PR solve? ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
@ -166,7 +166,7 @@ class Agent(LLM, ToolBase):
|
||||
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
|
||||
use_tools = []
|
||||
ans = ""
|
||||
for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools):
|
||||
for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools, user_defined_prompt):
|
||||
ans += delta_ans
|
||||
|
||||
if ans.find("**ERROR**") >= 0:
|
||||
|
||||
@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
from abc import ABC
|
||||
@ -93,8 +94,20 @@ class ExeSQL(ToolBase, ABC):
|
||||
sql = kwargs.get("sql")
|
||||
if not sql:
|
||||
raise Exception("SQL for `ExeSQL` MUST not be empty.")
|
||||
sqls = sql.split(";")
|
||||
|
||||
vars = self.get_input_elements_from_text(sql)
|
||||
args = {}
|
||||
for k, o in vars.items():
|
||||
args[k] = o["value"]
|
||||
if not isinstance(args[k], str):
|
||||
try:
|
||||
args[k] = json.dumps(args[k], ensure_ascii=False)
|
||||
except Exception:
|
||||
args[k] = str(args[k])
|
||||
self.set_input_value(k, args[k])
|
||||
sql = self.string_format(sql, args)
|
||||
|
||||
sqls = sql.split(";")
|
||||
if self._param.db_type in ["mysql", "mariadb"]:
|
||||
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
|
||||
port=self._param.port, password=self._param.password)
|
||||
|
||||
@ -291,6 +291,10 @@ def retrieval_test():
|
||||
kb_ids = req["kb_id"]
|
||||
if isinstance(kb_ids, str):
|
||||
kb_ids = [kb_ids]
|
||||
if not kb_ids:
|
||||
return get_json_result(data=False, message='Please specify dataset firstly.',
|
||||
code=settings.RetCode.DATA_ERROR)
|
||||
|
||||
doc_ids = req.get("doc_ids", [])
|
||||
use_kg = req.get("use_kg", False)
|
||||
top = int(req.get("top_k", 1024))
|
||||
|
||||
@ -941,6 +941,9 @@ def retrieval_test_embedded():
|
||||
kb_ids = req["kb_id"]
|
||||
if isinstance(kb_ids, str):
|
||||
kb_ids = [kb_ids]
|
||||
if not kb_ids:
|
||||
return get_json_result(data=False, message='Please specify dataset firstly.',
|
||||
code=settings.RetCode.DATA_ERROR)
|
||||
doc_ids = req.get("doc_ids", [])
|
||||
similarity_threshold = float(req.get("similarity_threshold", 0.0))
|
||||
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
||||
|
||||
@ -158,7 +158,7 @@ PROMPT_JINJA_ENV = jinja2.Environment(autoescape=False, trim_blocks=True, lstrip
|
||||
|
||||
|
||||
def citation_prompt(user_defined_prompts: dict={}) -> str:
|
||||
template = PROMPT_JINJA_ENV.from_string(CITATION_PROMPT_TEMPLATE)
|
||||
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts.get("citation_guidelines", CITATION_PROMPT_TEMPLATE))
|
||||
return template.render()
|
||||
|
||||
|
||||
@ -343,9 +343,12 @@ def analyze_task(chat_mdl, prompt, task_name, tools_description: list[dict], use
|
||||
tools_desc = tool_schema(tools_description)
|
||||
context = ""
|
||||
|
||||
template = PROMPT_JINJA_ENV.from_string(ANALYZE_TASK_USER)
|
||||
if user_defined_prompts.get("task_analysis"):
|
||||
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts["task_analysis"])
|
||||
else:
|
||||
template = PROMPT_JINJA_ENV.from_string(ANALYZE_TASK_SYSTEM + "\n\n" + ANALYZE_TASK_USER)
|
||||
context = template.render(task=task_name, context=context, agent_prompt=prompt, tools_desc=tools_desc)
|
||||
kwd = chat_mdl.chat(ANALYZE_TASK_SYSTEM,[{"role": "user", "content": context}], {})
|
||||
kwd = chat_mdl.chat(context, [{"role": "user", "content": "Please analyze it."}])
|
||||
if isinstance(kwd, tuple):
|
||||
kwd = kwd[0]
|
||||
kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
|
||||
@ -358,7 +361,7 @@ def next_step(chat_mdl, history:list, tools_description: list[dict], task_desc,
|
||||
if not tools_description:
|
||||
return ""
|
||||
desc = tool_schema(tools_description)
|
||||
template = PROMPT_JINJA_ENV.from_string(NEXT_STEP)
|
||||
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts.get("plan_generation", NEXT_STEP))
|
||||
user_prompt = "\nWhat's the next tool to call? If ready OR IMPOSSIBLE TO BE READY, then call `complete_task`."
|
||||
hist = deepcopy(history)
|
||||
if hist[-1]["role"] == "user":
|
||||
@ -375,7 +378,7 @@ def next_step(chat_mdl, history:list, tools_description: list[dict], task_desc,
|
||||
def reflect(chat_mdl, history: list[dict], tool_call_res: list[Tuple], user_defined_prompts: dict={}):
|
||||
tool_calls = [{"name": p[0], "result": p[1]} for p in tool_call_res]
|
||||
goal = history[1]["content"]
|
||||
template = PROMPT_JINJA_ENV.from_string(REFLECT)
|
||||
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts.get("reflection", REFLECT))
|
||||
user_prompt = template.render(goal=goal, tool_calls=tool_calls)
|
||||
hist = deepcopy(history)
|
||||
if hist[-1]["role"] == "user":
|
||||
|
||||
Reference in New Issue
Block a user