Fix: parent-children chunking method. (#11997)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Kevin Hu
2025-12-17 16:50:36 +08:00
committed by GitHub
parent 7baa67dfe8
commit 8e4d011b15
10 changed files with 160 additions and 57 deletions

View File

@ -23,19 +23,19 @@ import sys
import threading
import time
import json_repair
from api.db import PIPELINE_SPECIAL_PROGRESS_FREEZE_TASK_TYPES
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.pipeline_operation_log_service import PipelineOperationLogService
from common.connection_utils import timeout
from common.metadata_utils import update_metadata_to, metadata_schema
from rag.utils.base64_image import image2id
from rag.utils.raptor_utils import should_skip_raptor, get_skip_reason
from common.log_utils import init_root_logger
from common.config_utils import show_configs
from graphrag.general.index import run_graphrag_for_kb
from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
from rag.prompts.generator import keyword_extraction, question_proposal, content_tagging, run_toc_from_text
from rag.prompts.generator import keyword_extraction, question_proposal, content_tagging, run_toc_from_text, \
gen_metadata
import logging
import os
from datetime import datetime
@ -368,6 +368,45 @@ async def build_chunks(task, progress_callback):
raise
progress_callback(msg="Question generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
if task["parser_config"].get("enable_metadata", False) and task["parser_config"].get("metadata"):
st = timer()
progress_callback(msg="Start to generate meta-data for every chunk ...")
chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
async def gen_metadata_task(chat_mdl, d):
cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "metadata")
if not cached:
async with chat_limiter:
cached = await gen_metadata(chat_mdl,
metadata_schema(task["parser_config"]["metadata"]),
d["content_with_weight"])
set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "metadata")
if cached:
d["metadata_obj"] = cached
tasks = []
for d in docs:
tasks.append(asyncio.create_task(gen_metadata_task(chat_mdl, d)))
try:
await asyncio.gather(*tasks, return_exceptions=False)
except Exception as e:
logging.error("Error in doc_question_proposal", exc_info=e)
for t in tasks:
t.cancel()
await asyncio.gather(*tasks, return_exceptions=True)
raise
metadata = {}
for ck in cks:
metadata = update_metadata_to(metadata, ck["metadata_obj"])
del ck["metadata_obj"]
if metadata:
e, doc = DocumentService.get_by_id(task["doc_id"])
if e:
if isinstance(doc.meta_fields, str):
doc.meta_fields = json.loads(doc.meta_fields)
metadata = update_metadata_to(metadata, doc.meta_fields)
DocumentService.update_by_id(task["doc_id"], {"meta_fields": metadata})
progress_callback(msg="Question generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
if task["kb_parser_config"].get("tag_kb_ids", []):
progress_callback(msg="Start to tag for every chunk ...")
kb_ids = task["kb_parser_config"]["tag_kb_ids"]
@ -602,36 +641,6 @@ async def run_dataflow(task: dict):
metadata = {}
def dict_update(meta):
nonlocal metadata
if not meta:
return
if isinstance(meta, str):
try:
meta = json_repair.loads(meta)
except Exception:
logging.error("Meta data format error.")
return
if not isinstance(meta, dict):
return
for k, v in meta.items():
if isinstance(v, list):
v = [vv for vv in v if isinstance(vv, str)]
if not v:
continue
if not isinstance(v, list) and not isinstance(v, str):
continue
if k not in metadata:
metadata[k] = v
continue
if isinstance(metadata[k], list):
if isinstance(v, list):
metadata[k].extend(v)
else:
metadata[k].append(v)
else:
metadata[k] = v
for ck in chunks:
ck["doc_id"] = doc_id
ck["kb_id"] = [str(task["kb_id"])]
@ -656,7 +665,7 @@ async def run_dataflow(task: dict):
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
del ck["summary"]
if "metadata" in ck:
dict_update(ck["metadata"])
metadata = update_metadata_to(metadata, ck["metadata"])
del ck["metadata"]
if "content_with_weight" not in ck:
ck["content_with_weight"] = ck["text"]
@ -670,7 +679,7 @@ async def run_dataflow(task: dict):
if e:
if isinstance(doc.meta_fields, str):
doc.meta_fields = json.loads(doc.meta_fields)
dict_update(doc.meta_fields)
metadata = update_metadata_to(metadata, doc.meta_fields)
DocumentService.update_by_id(doc_id, {"meta_fields": metadata})
start_ts = timer()