revert white-space changes in docs (#12557)

### What problem does this PR solve?

Trailing white-spaces in commit 6814ace1aa
got automatically trimmed by code editor may causes documentation
typesetting broken.

Mostly for double spaces for soft line breaks.  

### Type of change

- [x] Documentation Update
This commit is contained in:
Jimmy Ben Klieve
2026-01-13 09:41:02 +08:00
committed by GitHub
parent fd0a1fde6b
commit 867ec94258
71 changed files with 660 additions and 731 deletions

View File

@ -5,7 +5,6 @@ sidebar_custom_props: {
categoryIcon: LucideMonitorCog
}
---
# Deploy local models
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
@ -56,9 +55,9 @@ $ sudo docker exec ollama ollama pull llama3.2
```
```bash
$ sudo docker exec ollama ollama pull bge-m3
> pulling daec91ffb5dd... 100% ▕████████████████▏ 1.2 GB
> success
$ sudo docker exec ollama ollama pull bge-m3
> pulling daec91ffb5dd... 100% ▕████████████████▏ 1.2 GB
> success
```
### 2. Find Ollama URL and ensure it is accessible
@ -108,7 +107,7 @@ Max retries exceeded with url: /api/chat (Caused by NewConnectionError('<urllib3
### 5. Update System Model Settings
Click on your logo **>** **Model providers** **>** **System Model Settings** to update your model:
- *You should now be able to find **llama3.2** from the dropdown list under **Chat model**, and **bge-m3** from the dropdown list under **Embedding model**.*
### 6. Update Chat Configuration
@ -128,7 +127,7 @@ To deploy a local model, e.g., **Mistral**, using Xinference:
### 1. Check firewall settings
Ensure that your host machine's firewall allows inbound connections on port 9997.
Ensure that your host machine's firewall allows inbound connections on port 9997.
### 2. Start an Xinference instance
@ -151,13 +150,13 @@ In RAGFlow, click on your logo on the top right of the page **>** **Model provid
### 5. Complete basic Xinference settings
Enter an accessible base URL, such as `http://<your-xinference-endpoint-domain>:9997/v1`.
Enter an accessible base URL, such as `http://<your-xinference-endpoint-domain>:9997/v1`.
> For rerank model, please use the `http://<your-xinference-endpoint-domain>:9997/v1/rerank` as the base URL.
### 6. Update System Model Settings
Click on your logo **>** **Model providers** **>** **System Model Settings** to update your model.
*You should now be able to find **mistral** from the dropdown list under **Chat model**.*
### 7. Update Chat Configuration
@ -173,7 +172,7 @@ To deploy a local model, e.g., **Qwen2**, using IPEX-LLM-accelerated Ollama:
### 1. Check firewall settings
Ensure that your host machine's firewall allows inbound connections on port 11434. For example:
```bash
sudo ufw allow 11434/tcp
```
@ -182,7 +181,7 @@ sudo ufw allow 11434/tcp
#### 2.1 Install IPEX-LLM for Ollama
:::tip NOTE
:::tip NOTE
IPEX-LLM's supports Ollama on Linux and Windows systems.
:::
@ -194,7 +193,7 @@ For detailed information about installing IPEX-LLM for Ollama, see [Run llama.cp
#### 2.2 Initialize Ollama
1. Activate the `llm-cpp` Conda environment and initialize Ollama:
1. Activate the `llm-cpp` Conda environment and initialize Ollama:
<Tabs
defaultValue="linux"
@ -203,7 +202,7 @@ For detailed information about installing IPEX-LLM for Ollama, see [Run llama.cp
{label: 'Windows', value: 'windows'},
]}>
<TabItem value="linux">
```bash
conda activate llm-cpp
init-ollama
@ -221,7 +220,7 @@ For detailed information about installing IPEX-LLM for Ollama, see [Run llama.cp
</Tabs>
2. If the installed `ipex-llm[cpp]` requires an upgrade to the Ollama binary files, remove the old binary files and reinitialize Ollama using `init-ollama` (Linux) or `init-ollama.bat` (Windows).
*A symbolic link to Ollama appears in your current directory, and you can use this executable file following standard Ollama commands.*
#### 2.3 Launch Ollama service
@ -229,7 +228,7 @@ For detailed information about installing IPEX-LLM for Ollama, see [Run llama.cp
1. Set the environment variable `OLLAMA_NUM_GPU` to `999` to ensure that all layers of your model run on the Intel GPU; otherwise, some layers may default to CPU.
2. For optimal performance on Intel Arc™ A-Series Graphics with Linux OS (Kernel 6.2), set the following environment variable before launching the Ollama service:
```bash
```bash
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
3. Launch the Ollama service:
@ -317,12 +316,12 @@ To enable IPEX-LLM accelerated Ollama in RAGFlow, you must also complete the con
3. [Update System Model Settings](#6-update-system-model-settings)
4. [Update Chat Configuration](#7-update-chat-configuration)
### 5. Deploy VLLM
### 5. Deploy VLLM
ubuntu 22.04/24.04
```bash
pip install vllm
pip install vllm
```
### 5.1 RUN VLLM WITH BEST PRACTISE

View File

@ -5,7 +5,6 @@ sidebar_custom_props: {
categoryIcon: LucideKey
}
---
# Configure model API key
An API key is required for RAGFlow to interact with an online AI model. This guide provides information about setting your model API key in RAGFlow.
@ -33,7 +32,7 @@ You have two options for configuring your model API key:
- Update `api_key` with yours.
- Update `base_url` if you use a proxy to connect to the remote service.
3. Reboot your system for your changes to take effect.
4. Log into RAGFlow.
4. Log into RAGFlow.
_After logging into RAGFlow, you will find your chosen model appears under **Added models** on the **Model providers** page._
### Configure model API key after logging into RAGFlow